Isoperimetric inequality for Div-curl fields

被引:3
作者
Carozza, M
Di Napoli, AP
机构
[1] Univ Sannio, I-82100 Benevento, Italy
[2] Univ Naples, Dipartimento Matemat R Caccioppoli, I-80126 Naples, Italy
关键词
isoperimetric inequality; Div-curl fields; Holder continuity;
D O I
10.1080/10255830290030471
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (E, B) be a Holder conjugate pair of vector fields, both belonging to the space L(2n-2)/n(R-n; R-n). Suppose that div B = 0 and curl E = 0. In this paper we prove the following isoperimetric type inequality [GRAPHICS] where J(x, F) = [E, B] and \F\(2) = \E\(2) + \B\(2). As an application, we recover Holder continuity for solutions of n-Laplace equation div(\delu\(n-2)delu) = 0.
引用
收藏
页码:405 / 419
页数:15
相关论文
共 8 条
[1]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[2]   A SHARP FORM OF POINCARE TYPE INEQUALITIES ON BALLS AND SPHERES [J].
CIANCHI, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (04) :558-569
[3]   ON THE AREA DISTORTION BY QUASI-CONFORMAL MAPPINGS [J].
EREMENKO, A ;
HAMILTON, DH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (09) :2793-2797
[4]   Div-curl fields of finite distortion [J].
Iwaniec, T ;
Sbordone, C .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08) :729-734
[5]  
IWANIEC T, 1999, QUASIHARMONIC FIELDS
[6]  
IWANIEC T, 1987, LECT QUASICONFORMAL
[7]  
MIGLIACCIO L, IN PRESS RICERCHE MA
[8]   ISOPERIMETRIC INEQUALITY [J].
OSSERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :1182-1238