Typical Characteristics of Whistler Mode Waves Categorized by Their Spectral Properties Using Van Allen Probes Observations

被引:41
作者
Teng, S. [1 ,2 ,3 ]
Tao, X. [1 ,2 ]
Li, W. [3 ]
机构
[1] Univ Sci & Technol China, Dept Geophys & Planetary Sci, CAS Key Lab Geospace Environm, Hefei, Anhui, Peoples R China
[2] CAS Ctr Excellence Comparat Planetol, Hefei, Anhui, Peoples R China
[3] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA
关键词
banded whistler waves; no-gap whistler waves; chorus waves; CHORUS; ACCELERATION; SCATTERING;
D O I
10.1029/2019GL082161
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Properties of banded, no-gap, lower band only, and upper band only whistler mode waves (0.1-0.8f(ce)) outside the plasmasphere are investigated using Van Allen Probes data. Our analysis shows that no-gap whistler waves have higher occurrence rate at morning side and dayside, while banded and lower band only waves have higher occurrence rate between midnight and dawn. We also find that the occurrence rate of no-gap whistler waves peaks at magnetic latitude vertical bar MLAT vertical bar similar to 8-10 degrees, while banded waves have higher occurrence rate near the equator for vertical bar MLAT vertical bar less than or similar to 6 degrees. The wave normal angle distributions of these four groups of waves are similar to previous results. The distinct local time and latitudinal distribution of no-gap and banded whistler mode waves is critical to further understand the formation mechanism of the power minimum at half electron gyrofrequency.
引用
收藏
页码:3607 / 3614
页数:8
相关论文
共 36 条
[1]   Source regions of banded chorus [J].
Bell, T. F. ;
Inan, U. S. ;
Haque, N. ;
Pickett, J. S. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[2]   Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes [J].
Bortnik, J. ;
Thorne, R. M. ;
Meredith, N. P. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2007, 112 (A8)
[3]   Landau damping and resultant unidirectional propagation of chorus waves [J].
Bortnik, J ;
Inan, US ;
Bell, TF .
GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (03)
[4]   MAGNETOSPHERIC CHORUS - OCCURRENCE PATTERNS AND NORMALIZED FREQUENCY [J].
BURTIS, WJ ;
HELLIWELL, RA .
PLANETARY AND SPACE SCIENCE, 1976, 24 (11) :1007-&
[5]   Nonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorus [J].
Fu, Xiangrong ;
Guo, Zehua ;
Dong, Chuanfei ;
Gary, S. Peter .
GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (09) :3150-3159
[6]   Nonlinear damping of chorus emissions at local half cyclotron frequencies observed by Geotail at L > 9 [J].
Habagishi, Toshihiro ;
Yagitani, Satoshi ;
Omura, Yoshiharu .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (06) :4475-4483
[7]   Timescale for radiation belt electron acceleration by whistler mode chorus waves [J].
Horne, RB ;
Thorne, RM ;
Glauert, SA ;
Albert, JM ;
Meredith, NP ;
Anderson, RR .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A3)
[8]   Generation of banded chorus by a two-component energetic electron distribution in an inhomogeneous magnetic field [J].
Huang, H. ;
Wang, Z. B. ;
Tao, X. ;
Wang, X. G. .
PHYSICS OF PLASMAS, 2017, 24 (10)
[9]   Pulsating aurora from electron scattering by chorus waves [J].
Kasahara, S. ;
Miyoshi, Y. ;
Yokota, S. ;
Mitani, T. ;
Kasahara, Y. ;
Matsuda, S. ;
Kumamoto, A. ;
Matsuoka, A. ;
Kazama, Y. ;
Frey, H. U. . ;
Ngelopoulos, V. A. ;
Kurita, S. ;
Keika, K. ;
Seki, K. ;
Shinohara, I. .
NATURE, 2018, 554 (7692) :337-+
[10]   A simulation study of the propagation of whistler-mode chorus in the Earth's inner magnetosphere [J].
Katoh, Yuto .
EARTH PLANETS AND SPACE, 2014, 66