CENTRAL LIMIT THEOREM FOR AN ADDITIVE FUNCTIONAL OF THE FRACTIONAL BROWNIAN MOTION

被引:14
作者
Hu, Yaozhong [1 ]
Nualart, David [1 ]
Xu, Fangjun [2 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] E China Normal Univ, Sch Finance & Stat, Shanghai 200241, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional Brownian motion; central limit theorem; local time; method of moments; LOCAL-TIMES;
D O I
10.1214/12-AOP825
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a central limit theorem for an additive functional of the d-dimensional fractional Brownian motion with Hurst index H is an element of (1/1+d, 1/d), using the method of moments, extending the result by Papanicolaou, Stroock and Varadhan in the case of the standard Brownian motion.
引用
收藏
页码:168 / 203
页数:36
相关论文
共 15 条
[1]  
[Anonymous], 1970, PRINCETON MATH SER
[2]   LOCAL NONDETERMINISM AND LOCAL TIMES OF GAUSSIAN PROCESSES [J].
BERMAN, SM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (01) :69-94
[3]  
Biagini F, 2008, PROBAB APPL SER, P1
[4]  
BIANE P, 1989, LECT NOTES MATH, V1372, P198
[5]   OCCUPATION DENSITIES [J].
GEMAN, D ;
HOROWITZ, J .
ANNALS OF PROBABILITY, 1980, 8 (01) :1-67
[6]   Integral representation of renormalized self-intersection local times [J].
Hu, Yaozhong ;
Nualart, David ;
Song, Han .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (09) :2507-2532
[7]   Renormalized self-intersection local time for fractional Brownian motion [J].
Hu, YZ ;
Nualart, D .
ANNALS OF PROBABILITY, 2005, 33 (03) :948-983
[8]   ERGODIC PROPERTY OF THE BROWNIAN MOTION PROCESS [J].
KALLIANPUR, G ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1953, 39 (06) :525-533
[9]   A limit theorem for occupation times of fractional Brownian motion [J].
Kasahara, Y ;
Kosugi, N .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1997, 67 (02) :161-175
[10]   LIMIT PROCESSES FOR A CLASS OF ADDITIVE FUNCTIONALS OF RECURRENT DIFFUSION PROCESSES [J].
KASAHARA, Y ;
KOTANI, S .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 49 (02) :133-153