Algebraic Chase Decoding of Reed-Solomon Codes Using Module Minimisation

被引:0
作者
Chen, Li [1 ]
Bossert, Martin [2 ]
机构
[1] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou, Guangdong, Peoples R China
[2] Univ Ulm, Inst Commun Engn, Ulm, Germany
来源
PROCEEDINGS OF 2016 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2016) | 2016年
基金
中国国家自然科学基金;
关键词
Algebraic decoding; Chase decoding; interpolation; module minimisation; Reed-Solomon codes; EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a low-complexity high performance soft-in hard-out decoding algorithm for Reed-Solomon (RS) codes. The Guruswami-Sudan (GS) algebraic list decoding algorithm can correct errors beyond half the distance bound by performing a curve-fitting decoding process. However, its extra error-correction capability is exchanged with a high computational cost which is dominated by the interpolation. In this paper, an algebraic Chase decoding (ACD) approach that utilises the module minimisation (MM) technique is introduced, namely the ACD-MM algorithm. The MM technique solves the interpolation problem with less computational cost than the conventional Koetter's interpolation. The proposal exploits the soft received information to formulate the interpolation test-vectors. The re encoding transform is further employed to reduce the size of the entries of the module, benefiting a simpler MM process. Our analyses show that the ACD-MM algorithm can outperform the legacy Koetter-Vardy (KV) soft-decision list decoding algorithm with a much lower complexity. Moreover, the proposal allows parallel execution of each Chase decoding trial, resulting in a low decoding latency for practical interest.
引用
收藏
页码:305 / 309
页数:5
相关论文
共 16 条
[1]   Linear diophantine equations over polynomials and soft decoding of Reed-Solomon codes [J].
Alekhnovich, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) :2257-2265
[2]   Key equations for list decoding of Reed-Solomon codes and how to solve them [J].
Beelen, Peter ;
Brander, Kristian .
JOURNAL OF SYMBOLIC COMPUTATION, 2010, 45 (07) :773-786
[3]  
Bellorado J., 2010, IEEE T INFORM THEORY, V56, P68
[4]   On the Average Complexity of Reed-Solomon List Decoders [J].
Cassuto, Yuval ;
Bruck, Jehoshua ;
McEliece, Robert J. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (04) :2336-2351
[5]   Progressive Algebraic Soft-Decision Decoding of Reed-Solomon Codes [J].
Chen, Li ;
Tang, Siyun ;
Ma, Xiao .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (02) :433-442
[6]   Improved decoding of Reed-Solomon and algebraic-geometry codes [J].
Guruswami, V ;
Sudan, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :1757-1767
[7]   Algebraic soft-decision decoding of Reed-Solomon codes [J].
Koetter, R ;
Vardy, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) :2809-2825
[8]  
Koetter R., 1996, THESIS
[9]   The Re-Encoding Transformation in Algebraic List-Decoding of Reed-Solomon Codes [J].
Koetter, Ralf ;
Ma, Jun ;
Vardy, Alexander .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :633-647
[10]   List decoding of Reed-Solomon codes from a Grobner basis perspective [J].
Lee, Kwankyu ;
O'Sullivan, Michael E. .
JOURNAL OF SYMBOLIC COMPUTATION, 2008, 43 (09) :645-658