Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity

被引:20
作者
Pavel, Ana B. [1 ,2 ]
Sonkin, Dmitriy [3 ]
Reddy, Anupama [4 ]
机构
[1] Boston Univ, Grad Program Bioinformat, 24 Cummington Mall, Boston, MA 02215 USA
[2] Boston Univ, Sch Med, Sect Computat Biomed, 72 East Concord St, Boston, MA 02118 USA
[3] Novartis Inst Biomed Res, 250 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Duke Univ, Med Ctr, Durham, NC 27708 USA
关键词
Fuzzy logic modeling; Gene activity; Oncogene; Tumor suppressor; Drug sensitivity; Colorectal cancer subtypes; TUMOR-SUPPRESSOR; CLASS DISCOVERY; EXPRESSION; GENOMICS; MUTATION; PATHWAY; PLUS; EGFR;
D O I
10.1186/s12918-016-0260-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: High throughput technologies have been used to profile genes in multiple different dimensions, such as genetic variation, copy number, gene and protein expression, epigenetics, metabolomics. Computational analyses often treat these different data types as independent, leading to an explosion in the number of features making studies under-powered and more importantly do not provide a comprehensive view of the gene's state. We sought to infer gene activity by integrating different dimensions using biological knowledge of oncogenes and tumor suppressors. Results: This paper proposes an integrative model of oncogene and tumor suppressor activity in cells which is used to identify cancer drivers and compute patient-specific gene activity scores. We have developed a Fuzzy Logic Modeling (FLM) framework to incorporate biological knowledge with multi-omics data such as somatic mutation, gene expression and copy number measurements. The advantage of using a fuzzy logic approach is to abstract meaningful biological rules from low-level numerical data. Biological knowledge is often qualitative, thus combining it with quantitative numerical measurements may leverage new biological insights about a gene's state. We show that the oncogenic and altered tumor suppressing state of a gene can be better characterized by integrating different molecular measurements with biological knowledge than by each data type alone. We validate the gene activity score using data from the Cancer Cell Line Encyclopedia and drug sensitivity data for five compounds: BYL719 (PIK3CA inhibitor), PLX4720 (BRAF inhibitor), AZD6244 (MEK inhibitor), Erlotinib (EGFR inhibitor), and Nutlin-3 (MDM2 inhibitor). The integrative score improves prediction of drug sensitivity for the known drug targets of these compounds compared to each data type alone. The gene activity scores are also used to cluster colorectal cancer cell lines. Two subtypes of CRCs were found and potential cancer drivers and therapeutic targets for each of the subtypes were identified. Conclusions: We propose a fuzzy logic based approach to infer gene activity in cancer by integrating numerical data with descriptive biological knowledge. We compute general patient-specific gene-level scores useful to determine the oncogenic or tumor suppressor status of cancer gene drivers and to cluster or classify patients.
引用
收藏
页数:14
相关论文
共 42 条
[1]   Prospective breast cancer risk prediction model for women undergoing screening mammography [J].
Barlow, William E. ;
White, Emily ;
Ballard-Barbash, Rachel ;
Vacek, Pamela M. ;
Titus-Ernstoff, Linda ;
Carney, Patricia A. ;
Tice, Jeffrey A. ;
Buist, Diana S. M. ;
Geller, Berta M. ;
Rosenberg, Robert ;
Yankaskas, Bonnie C. ;
Kerlikowske, Karla .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2006, 98 (17) :1204-1214
[2]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[3]  
Berg M, 2012, DISCOV MED, V14, P207
[4]   Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles [J].
Bertrand, Denis ;
Chng, Kern Rei ;
Sherbaf, Faranak Ghazi ;
Kiesel, Anja ;
Chia, Burton K. H. ;
Sia, Yee Yen ;
Huang, Sharon K. ;
Hoon, Dave S. B. ;
Liu, Edison T. ;
Hillmer, Axel ;
Nagarajan, Niranjan .
NUCLEIC ACIDS RESEARCH, 2015, 43 (07)
[5]   Improving Breast Cancer Survival Analysis through Competition-Based Multidimensional Modeling [J].
Bilal, Erhan ;
Dutkowski, Janusz ;
Guinney, Justin ;
Jang, In Sock ;
Logsdon, Benjamin A. ;
Pandey, Gaurav ;
Sauerwine, Benjamin A. ;
Shimoni, Yishai ;
Vollan, Hans Kristian Moen ;
Mecham, Brigham H. ;
Rueda, Oscar M. ;
Tost, Jorg ;
Curtis, Christina ;
Alvarez, Mariano J. ;
Kristensen, Vessela N. ;
Aparicio, Samuel ;
Borresen-Dale, Anne-Lise ;
Caldas, Carlos ;
Califano, Andrea ;
Friend, Stephen H. ;
Ideker, Trey ;
Schadt, Eric E. ;
Stolovitzky, Gustavo A. ;
Margolin, Adam A. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (05)
[6]   Accumulation of driver and passenger mutations during tumor progression [J].
Bozic, Ivana ;
Antal, Tibor ;
Ohtsuki, Hisashi ;
Carter, Hannah ;
Kim, Dewey ;
Chen, Sining ;
Karchin, Rachel ;
Kinzler, Kenneth W. ;
Bogelstein, Bert ;
Nowak, Martin A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (43) :18545-18550
[7]  
Brock GN, 2009, STUD FUZZ SOFT COMP, V242, P141
[8]   Activated fibroblast growth factor receptor 3 is an oncogene that contributes to tumor progression in multiple myeloma [J].
Chesi, M ;
Brents, LA ;
Fly, SA ;
Bais, C ;
Robbiani, DF ;
Mesri, E ;
Kuehl, WM ;
Bergsagel, PL .
BLOOD, 2001, 97 (03) :729-736
[9]   A Logistic Regression Model Based on the National Mammography Database Format to Aid Breast Cancer Diagnosis [J].
Chhatwal, Jagpreet ;
Alagoz, Oguzhan ;
Lindstrom, Mary J. ;
Kahn, Charles E., Jr. ;
Shaffer, Katherine A. ;
Burnside, Elizabeth S. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 192 (04) :1117-1127
[10]  
Coley HM, 2012, ONCOTARGET, V3, P78