Structural basis for gating pore current in periodic paralysis

被引:51
作者
Jiang, Daohua [1 ]
El-Din, Tamer M. Gamal [1 ]
Ing, Christopher [2 ,3 ]
Lu, Peilong [1 ,4 ]
Pomes, Regis [2 ,3 ]
Zheng, Ning [1 ,5 ]
Catterall, William A. [1 ]
机构
[1] Univ Washington, Dept Pharmacol, Seattle, WA 98195 USA
[2] Hosp Sick Children, Mol Med, Toronto, ON, Canada
[3] Univ Toronto, Dept Biochem, Toronto, ON, Canada
[4] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[5] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
PARTICLE MESH EWALD; VOLTAGE SENSOR; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; SODIUM-CHANNEL; ION PERMEATION; MOUSE MODEL; NA+; VALIDATION; PHARMACOLOGY;
D O I
10.1038/s41586-018-0120-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Potassium-sensitive hypokalaemic and normokalaemic periodic paralysis are inherited skeletal muscle diseases characterized by episodes of flaccid muscle weakness(1,2). They are caused by single mutations in positively charged residues ('gating charges') in the S4 transmembrane segment of the voltage sensor of the voltage-gated sodium channel Na(v)1.4 or the calcium channel Ca(v)1.1(1,2). Mutations of the outermost gating charges (R1 and R2) cause hypokalaemic periodic paralysis(1,2) by creating a pathogenic gating pore in the voltage sensor through which cations leak in the resting state(3,4). Mutations of the third gating charge (R3) cause normokalaemic periodic paralysis(5) owing to cation leak in both activated and inactivated states(6). Here we present high-resolution structures of the model bacterial sodium channel Na(v)Ab with the analogous gating-charge mutations(7,8), which have similar functional effects as in the human channels. The R2G and R3G mutations have no effect on the backbone structures of the voltage sensor, but they create an aqueous cavity near the hydrophobic constriction site that controls gating charge movement through the voltage sensor. The R3G mutation extends the extracellular aqueous cleft through the entire length of the activated voltage sensor, creating an aqueous path through the membrane. Conversely, molecular modelling shows that the R2G mutation creates a continuous aqueous path through the membrane only in the resting state. Crystal structures of Na(v)Ab(R2G) in complex with guanidinium define a potential drug target site. Molecular dynamics simulations illustrate the mechanism of Na+ permeation through the mutant gating pore in concert with conformational fluctuations of the gating charge R4. Our results reveal pathogenic mechanisms of periodic paralysis at the atomic level and suggest designs of drugs that may prevent ionic leak and provide symptomatic relief from hypokalaemic and normokalaemic periodic paralysis.
引用
收藏
页码:590 / +
页数:17
相关论文
共 55 条
  • [1] Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
    Abraham, Mark James
    Murtola, Teemu
    Schulz, Roland
    Páll, Szilárd
    Smith, Jeremy C.
    Hess, Berk
    Lindah, Erik
    [J]. SoftwareX, 2015, 1-2 : 19 - 25
  • [2] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [3] Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ1 and χ2 Dihedral Angles
    Best, Robert B.
    Zhu, Xiao
    Shim, Jihyun
    Lopes, Pedro E. M.
    Mittal, Jeetain
    Feig, Michael
    MacKerell, Alexander D., Jr.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3257 - 3273
  • [4] Cannon S. C., 2017, HDB EXPT PHARM
  • [5] International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels
    Catterall, WA
    Goldin, AL
    Waxman, SG
    [J]. PHARMACOLOGICAL REVIEWS, 2005, 57 (04) : 397 - 409
  • [6] Catterall WA, 2017, NAT CHEM BIOL, V13, P455, DOI [10.1038/NCHEMBIO.2353, 10.1038/nchembio.2353]
  • [7] Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors
    Catterall, William A.
    Zheng, Ning
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2015, 40 (09) : 526 - 534
  • [8] Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology
    Catterall, William A.
    [J]. NEURON, 2010, 67 (06) : 915 - 928
  • [9] Catalysis of Na+ permeation in the bacterial sodium channel NaVAb
    Chakrabarti, Nilmadhab
    Ing, Christopher
    Payandeh, Jian
    Zheng, Ning
    Catterall, William A.
    Pomes, Regis
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (28) : 11331 - 11336
  • [10] MolProbity: all-atom structure validation for macromolecular crystallography
    Chen, Vincent B.
    Arendall, W. Bryan, III
    Headd, Jeffrey J.
    Keedy, Daniel A.
    Immormino, Robert M.
    Kapral, Gary J.
    Murray, Laura W.
    Richardson, Jane S.
    Richardson, David C.
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 12 - 21