Weak stabilization in degenerate parabolic equations in divergence form: application to degenerate Keller-Segel systems
被引:5
作者:
Ishida, Sachiko
论文数: 0引用数: 0
h-index: 0
机构:
Chiba Univ, Grad Sch Sci, Dept Math & Informat, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, JapanChiba Univ, Grad Sch Sci, Dept Math & Informat, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, Japan
Ishida, Sachiko
[1
]
Yokota, Tomomi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanChiba Univ, Grad Sch Sci, Dept Math & Informat, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, Japan
Yokota, Tomomi
[2
]
机构:
[1] Chiba Univ, Grad Sch Sci, Dept Math & Informat, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, Japan
[2] Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
TIME BLOW-UP;
GLOBAL EXISTENCE;
NONLINEAR DIFFUSION;
STOKES SYSTEM;
BOUNDEDNESS;
MODEL;
BEHAVIOR;
DECAY;
D O I:
10.1007/s00526-022-02203-w
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the initial-boundary value problem for the degenerate parabolic equation u(t) = del . f((u)del u + g(u, x, t)), x is an element of Omega, t > 0 in a smooth bounded domain Omega subset of R-N (N is an element of N) under the no-flux boundary condition with a non-negative initial data u(0) is an element of L-infinity(Omega). Here f is a non-negative function belonging to C([0, infinity)) boolean AND C-2 ((0, infinity)), and g is a vector-valued function on [0, infinity) x Omega x (0, infinity). It is known that this problem has a global-in-time weak solution by the well-known parabolic theory. This paper shows the stabilization in this problem; in detail, the problem admits a global weak solution which fulfills u(t) -> 1/vertical bar Omega vertical bar integral(Omega) u(0) weakly* in L-infinity (Omega) as t -> infinity.
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
Univ Paderborn, Inst Math, D-33098 Paderborn, GermanyDalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
Hashira, Takahiro
Ishida, Sachiko
论文数: 0引用数: 0
h-index: 0
机构:
Chiba Univ, Grad Sch Sci, Dept Math & Informat, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
Ishida, Sachiko
Yokota, Tomomi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
Univ Paderborn, Inst Math, D-33098 Paderborn, GermanyDalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
Hashira, Takahiro
Ishida, Sachiko
论文数: 0引用数: 0
h-index: 0
机构:
Chiba Univ, Grad Sch Sci, Dept Math & Informat, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
Ishida, Sachiko
Yokota, Tomomi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan