A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1

被引:97
作者
Ku, S. [1 ]
Chang, C. S. [1 ]
Hager, R. [1 ]
Churchill, R. M. [1 ]
Tynan, G. R. [2 ]
Cziegler, I. [2 ,8 ]
Greenwald, M. [3 ]
Hughes, J. [3 ]
Parker, S. E. [4 ]
Adams, M. F. [5 ]
D'Azevedo, E. [6 ]
Worley, P. [7 ]
机构
[1] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Univ Colorado, Boulder, CO 80309 USA
[5] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[6] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
[7] PHWorley Consulting, Oak Ridge, TN 37830 USA
[8] Univ York, York, N Yorkshire, England
关键词
RADIAL ELECTRIC-FIELD; PARTICLE SIMULATION; POLOIDAL ROTATION; ZONAL FLOWS; TRANSPORT; TURBULENCE; TRANSITIONS; EQUATIONS; REGIME; SCHEME;
D O I
10.1063/1.5020792
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A fast edge turbulence suppression event has been simulated in the electrostatic version of the gyrokinetic particle-in-cell code XGC1 in a realistic diverted tokamak edge geometry under neutral particle recycling. The results show that the sequence of turbulent Reynolds stress followed by neoclassical ion orbit-loss driven together conspire to form the sustaining radial electric field shear and to quench turbulent transport just inside the last closed magnetic flux surface. The main suppression action is located in a thin radial layer around psi(N) similar or equal to 0.96-0.98, where psi(N) is the normalized poloidal flux, with the time scale similar to 0.1 ms. Published by AIP Publishing.
引用
收藏
页数:17
相关论文
共 75 条
[1]   ELECTRON SUB-CYCLING IN PARTICLE SIMULATION OF PLASMA [J].
ADAM, JC ;
SERVENIERE, AG ;
LANGDON, AB .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (02) :229-244
[2]   Dependence of the L-H transition on X-point geometry and divertor recycling on NSTX [J].
Battaglia, D. J. ;
Chang, C. S. ;
Kaye, S. M. ;
Kim, K. ;
Ku, S. ;
Maingi, R. ;
Bell, R. E. ;
Diallo, A. ;
Gerhardt, S. ;
LeBlanc, B. P. ;
Menard, J. ;
Podesta, M. .
NUCLEAR FUSION, 2013, 53 (11)
[3]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[4]  
Birdsall C.K., 2018, Plasma physics via computer simulation
[5]   Interplay between turbulence, neoclassical and zonal flows during the transition from low to high confinement mode at ASDEX Upgrade [J].
Cavedon, M. ;
Puetterich, T. ;
Viezzer, E. ;
Birkenmeier, G. ;
Happel, T. ;
Laggner, F. M. ;
Manz, P. ;
Ryter, F. ;
Stroth, U. .
NUCLEAR FUSION, 2017, 57 (01)
[6]   Gyrokinetic projection of the divertor heat-flux width from present tokamaks to ITER [J].
Chang, C. S. ;
Ku, S. ;
Loarte, A. ;
Parail, V. ;
Koechl, F. ;
Romanelli, M. ;
Maingi, R. ;
Ahn, J. -W. ;
Gray, T. ;
Hughes, J. ;
LaBombard, B. ;
Leonard, T. ;
Makowski, M. ;
Terry, J. .
NUCLEAR FUSION, 2017, 57 (11)
[7]   Compressed ion temperature gradient turbulence in diverted tokamak edge [J].
Chang, C. S. ;
Ku, S. ;
Diamond, P. H. ;
Lin, Z. ;
Parker, S. ;
Hahm, T. S. ;
Samatova, N. .
PHYSICS OF PLASMAS, 2009, 16 (05)
[8]  
Chang CH, 2017, REV PAC BASIN FINANC, V20, DOI 10.1142/S0219091517500102
[9]   Numerical study of neoclassical plasma pedestal in a tokamak geometry [J].
Chang, CS ;
Ku, S ;
Weitzner, H .
PHYSICS OF PLASMAS, 2004, 11 (05) :2649-2667
[10]   X-transport: A baseline nonambipolar transport in a diverted tokamak plasma edge [J].
Chang, CS ;
Kue, S ;
Weitzner, H .
PHYSICS OF PLASMAS, 2002, 9 (09) :3884-3892