Tunable Non-Volatile Memory by Conductive Ferroelectric Domain Walls in Lithium Niobate Thin Films

被引:27
作者
Kaempfe, Thomas [1 ,2 ]
Wang, Bo [3 ,4 ]
Haussmann, Alexander [1 ]
Chen, Long-Qing [3 ,4 ]
Eng, Lukas M. [1 ]
机构
[1] Tech Univ Dresden, Inst Appl Phys, D-01069 Dresden, Germany
[2] Fraunhofer IPMS, Ctr Nanoelect Technol, D-01099 Dresden, Germany
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
关键词
conducting domain walls; ferroelectric films; lithium niobate; lithium niobate-on-insulator; scanning probe microscopy; non-volatile memory;
D O I
10.3390/cryst10090804
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Ferroelectric domain wall conductance is a rapidly growing field. Thin-film lithium niobate, as in lithium niobate on insulators (LNOI), appears to be an ideal template, which is tuned by the inclination of the domain wall. Thus, the precise tuning of domain wall inclination with the applied voltage can be used in non-volatile memories, which store more than binary information. In this study, we present the realization of this concept for non-volatile memories. We obtain remarkably stable set voltages by the ferroelectric nature of the device as well as a very large increase in the conduction, by at least five orders of magnitude at room temperature. Furthermore, the device conductance can be reproducibly tuned over at least two orders of magnitude. The observed domain wall (DW) conductance tunability by the applied voltage can be correlated with phase-field simulated DW inclination evolution upon poling. Furthermore, evidence for polaron-based conduction is given.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 37 条
[1]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140
[2]  
Conroy M., 2019, MICROSC MICROANAL, V25, P576, DOI [10.1017/S1431927619003611, DOI 10.1017/S1431927619003611]
[3]   Determination of the diffusion coefficient of lithium ions in nano-Si [J].
Ding, N. ;
Xu, J. ;
Yao, Y. X. ;
Wegner, G. ;
Fang, X. ;
Chen, C. H. ;
Lieberwirth, I. .
SOLID STATE IONICS, 2009, 180 (2-3) :222-225
[4]   Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors [J].
Eliseev, E. A. ;
Morozovska, A. N. ;
Svechnikov, G. S. ;
Gopalan, Venkatraman ;
Shur, V. Ya. .
PHYSICAL REVIEW B, 2011, 83 (23)
[5]   Towards reversible control of domain wall conduction in Pb(Zr0.2Ti0.8)O3 thin films [J].
Gaponenko, I. ;
Tueckmantel, P. ;
Karthik, J. ;
Martin, L. W. ;
Paruch, P. .
APPLIED PHYSICS LETTERS, 2015, 106 (16)
[6]   Enhancing the Domain Wall Conductivity in Lithium Niobate Single Crystals [J].
Godau, Christian ;
Kaempfe, Thomas ;
Thiessen, Andreas ;
Eng, Lukas M. ;
Haussmann, Alexander .
ACS NANO, 2017, 11 (05) :4816-4824
[7]   Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges [J].
Gonnissen, Julie ;
Batuk, Dmitry ;
Nataf, Guillaume F. ;
Jones, Lewys ;
Abakumov, Artem M. ;
Van Aert, Sandra ;
Schryvers, Dominique ;
Salje, Ekhard K. H. .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (42) :7599-7604
[8]   Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films [J].
Guyonnet, Jill ;
Gaponenko, Iaroslav ;
Gariglio, Stefano ;
Paruch, Patrycja .
ADVANCED MATERIALS, 2011, 23 (45) :5377-+
[9]   Three-Dimensional, Time-Resolved Profiling of Ferroelectric Domain Wall Dynamics by Spectral-Domain Optical Coherence Tomography [J].
Haussmann, Alexander ;
Kirsten, Lars ;
Schmidt, Sebastian ;
Cimalla, Peter ;
Wehmeier, Lukas ;
Koch, Edmund ;
Eng, Lukas M. .
ANNALEN DER PHYSIK, 2017, 529 (08)
[10]   Bottom-Up Assembly of Molecular Nanostructures by Means of Ferroelectric Lithography [J].
Haussmann, Alexander ;
Gemeinhardt, Andre ;
Schroeder, Mathias ;
Kaempfe, Thomas ;
Eng, Lukas M. .
LANGMUIR, 2017, 33 (02) :475-484