The geometry of modified Riemannian extensions

被引:40
作者
Calvino-Louzao, E. [1 ]
Garcia-Rio, E. [1 ]
Gilkey, P. [2 ]
Vazquez-Lorenzo, R. [1 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 465卷 / 2107期
关键词
affine connection; Einstein; Jacobi operator; para-Kaehler; Osserman manifold; modified Riemannian extension; OSSERMAN METRICS; JACOBI; NILPOTENT; MANIFOLDS; CONNECTIONS; OPERATORS;
D O I
10.1098/rspa.2009.0046
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We show that every paracomplex space form is locally isometric to a modified Riemannian extension and gives necessary and sufficient conditions for a modified Riemannian extension to be Einstein. We exhibit Riemannian extension Osserman manifolds of signature (3, 3), whose Jacobi operators have non-trivial Jordan normal form and which are not nilpotent. We present new four-dimensional results in Osserman geometry.
引用
收藏
页码:2023 / 2040
页数:18
相关论文
共 38 条
[1]  
Afifi Z., 1954, Q. J. Math, V5, P312, DOI [10.1093/qmath/5.1.312, DOI 10.1093/QMATH/5.1.312]
[2]  
ALEKSEEVSKY DV, J REINE ANG IN PRESS
[3]  
[Anonymous], 1997, B SOC MATH FR
[4]   Osserman pseudo-Riemannian manifolds of signature (2,2) [J].
Blazic, N ;
Bokan, N ;
Rakic, Z .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 71 :367-395
[5]   A note on Osserman Lorentzian manifolds [J].
Blazic, N ;
Bokan, N ;
Gilkey, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 :227-230
[6]  
BOKAN N, 1990, REND CIRC MAT PALERM, V39, P331, DOI DOI 10.1007/BF02844767
[7]   Nonsymmetric Osserman indefinite Kahler manifolds [J].
Bonome, A ;
Castro, R ;
Garcia-Rio, E ;
Hervella, L ;
Vazquez-Lorenzo, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (09) :2763-2769
[8]   Conformally Osserman four-dimensional manifolds whose conformal Jacobi operators have complex eigenvalues [J].
Brozos-Vázquez, M ;
García-Rjo, E ;
Vázquez-Lorenzo, R .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2069) :1425-1441
[9]  
CALVINOLOUZAO E, CAN J MATH IN PRESS
[10]  
Cortés V, 2004, J HIGH ENERGY PHYS