Excitatory versus inhibitory feedback in Bayesian formulations of scene construction

被引:13
作者
Abadi, Alireza Khatoon [1 ]
Yahya, Keyvan [2 ]
Amini, Massoud [1 ]
Friston, Karl [3 ]
Heinke, Dietmar [4 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Math, Tehran 14115134, Iran
[2] Tech Univ Chemnitz, Fac Informat, Str Nationen 62,R B216, D-09111 Chemnitz, Germany
[3] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, 12 Queen Sq, London WC1N 3BG, England
[4] Univ Birmingham, Sch Psychol, Ctr Computat Neurosci & Cognit Robot, Birmingham B15 2TT, W Midlands, England
基金
英国惠康基金;
关键词
selective visual attention; computational modelling; active inference; parallel distributed processing; neuroimaging; FREE-ENERGY PRINCIPLE; VISUAL-SEARCH; ATTENTION; MODEL; FEEDFORWARD; PREDICTION; PERCEPTION; RESPONSES; CIRCUITS; BRAIN;
D O I
10.1098/rsif.2018.0344
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The selective attention for identification model (SAIM) is an established model of selective visual attention. SAIM implements translation-invariant object recognition, in scenes with multiple objects, using the parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e. object knowledge) with bottom-up sensory information. By contrast, predictive coding implementations of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types of architectures can reproduce the response time costs induced by multiple objects-as found in visual search experiments. However, due to the different nature of the feedback, the two SAIM schemes make distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures.
引用
收藏
页数:13
相关论文
共 61 条
[1]  
Abramson N., 2006, PATTERN RECOGN, V103, P886
[2]   Attentional Enhancement of Auditory Mismatch Responses: a DCM/MEG Study [J].
Auksztulewicz, Ryszard ;
Friston, Karl .
CEREBRAL CORTEX, 2015, 25 (11) :4273-4283
[3]   A DCM study of spectral asymmetries in feedforward and feedback connections between visual areas V1 and V4 in the monkey [J].
Bastos, A. M. ;
Litvak, V. ;
Moran, R. ;
Bosman, C. A. ;
Fries, P. ;
Friston, K. J. .
NEUROIMAGE, 2015, 108 :460-475
[4]   Canonical Microcircuits for Predictive Coding [J].
Bastos, Andre M. ;
Usrey, W. Martin ;
Adams, Rick A. ;
Mangun, George R. ;
Fries, Pascal ;
Friston, Karl J. .
NEURON, 2012, 76 (04) :695-711
[5]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[6]  
Bohme C., 2009, CONNECTIONIST MODELS, P325
[7]   Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State [J].
Boly, Melanie ;
Garrido, Marta Isabel ;
Gosseries, Olivia ;
Bruno, Marie-Aurelie ;
Boveroux, Pierre ;
Schnakers, Caroline ;
Massimini, Marcello ;
Litvak, Vladimir ;
Laureys, Steven ;
Friston, Karl J. .
SCIENCE, 2011, 332 (6031) :858-862
[8]   Attention is more than prediction precision [J].
Bowman, Howard ;
Filetti, Marco ;
Wyble, Brad ;
Olivers, Christian .
BEHAVIORAL AND BRAIN SCIENCES, 2013, 36 (03) :206-208
[9]   Free-energy and illusions: the Cornsweet effect [J].
Brown, Harriet ;
Friston, Karl J. .
FRONTIERS IN PSYCHOLOGY, 2012, 3
[10]   Dynamic causal modelling of precision and synaptic gain in visual perception - an EEG study [J].
Brown, Harriet R. ;
Friston, Karl J. .
NEUROIMAGE, 2012, 63 (01) :223-231