TURBUSTAT: Turbulence Statistics in Python']Python

被引:25
|
作者
Koch, Eric W. [1 ]
Rosolowsky, Erik W. [1 ]
Boyden, Ryan D. [2 ,3 ]
Burkhart, Blakesley [4 ,5 ]
Ginsburg, Adam [6 ]
Loeppky, Jason L. [7 ]
Offner, Stella S. R. [8 ]
机构
[1] Univ Alberta, Dept Phys, 4-183 CCIS, Edmonton, AB T6G 2E1, Canada
[2] Univ Arizona, Dept Astron, 933 North Cherry Ave, Tucson, AZ 85721 USA
[3] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA
[4] Flatiron Inst, Ctr Computat Astrophys, 162 Fifth Ave, New York, NY 10010 USA
[5] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[6] Natl Radio Astron Observ, 1003 Lopezville Rd, Socorro, NM 87801 USA
[7] Univ British Columbia, Dept Phys, Okanagan Campus,3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[8] Univ Texas Austin, Dept Astron, 2515 Speedway,Stop C1400, Austin, TX 78712 USA
来源
ASTRONOMICAL JOURNAL | 2019年 / 158卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
methods: data analysis; methods: statistical; turbulence; SPECTRAL-LINE DATA; HIERARCHICAL INTERSTELLAR STRUCTURE; DENSITY-VELOCITY CORRELATIONS; PRINCIPAL COMPONENT ANALYSIS; MAGNETIC-FIELD; POWER SPECTRUM; SUPERSONIC TURBULENCE; DELTA-VARIANCE; STAR-FORMATION; MAGNETOHYDRODYNAMIC TURBULENCE;
D O I
10.3847/1538-3881/ab1cc0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present TURBUSTAT (v1.0): a PYTHON package for computing turbulence statistics in spectral-line data cubes. TURBUSTAT includes implementations of 14 methods for recovering turbulent properties from observational data. Additional features of the software include: distance metrics for comparing two data sets; a segmented linear model for fitting lines with a break point; a two-dimensional elliptical power-law model; multicore fast-Fourier-transform support; a suite for producing simulated observations of fractional Brownian Motion fields, including two-dimensional images and optically thin H I data cubes; and functions for creating realistic world coordinate system information for synthetic observations. This paper summarizes the TURBUSTAT package and provides representative examples using several different methods. TURBUSTAT is an open-source package and we welcome community feedback and contributions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] GraSPy: Graph Statistics in Python']Python
    Chung, Jaewon
    Pedigo, Benjamin D.
    Bridgeford, Eric W.
    Varjavand, Bijan K.
    Helm, Hayden S.
    Vogelstein, Joshua T.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [2] PYTHON']PYTHON FOR UNIFIED RESEARCH IN ECONOMETRICS AND STATISTICS
    Bilina, Roseline
    Lawford, Steve
    ECONOMETRIC REVIEWS, 2012, 31 (05) : 558 - 591
  • [4] dcor: Distance correlation and energy statistics in Python']Python
    Ramos-Carreno, Carlos
    Torrecilla, Jose L.
    SOFTWAREX, 2023, 22
  • [5] Foundations of Statistics for Data Scientists: With R and Python']Python
    Leemis, Lawrence
    JOURNAL OF QUALITY TECHNOLOGY, 2023, 55 (05) : 617 - 618
  • [6] Foundations of Statistics for Data Scientists: With R and Python']Python
    Horton, Nicholas J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1603 - 1604
  • [7] Natter: A Python']Python Natural Image Statistics Toolbox
    Sinz, Fabian H.
    Lies, Joern-Philipp
    Gerwinn, Sebastian
    Bethge, Matthias
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 61 (05): : 1 - 34
  • [8] Applied Univariate, Bivariate, and Multivariate Statistics Using Python']Python
    Persson, Isaiah
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2022, 29 (02) : 321 - 325
  • [9] Graspy: Graph statistics in python
    Chung, Jaewon
    Pedigo, Benjamin D.
    Bridgeford, Eric W.
    Varjavand, Bijan K.
    Helm, Hayden S.
    Vogelstein, Joshua T.
    Journal of Machine Learning Research, 2019, 20
  • [10] The Python']Python/C API: Evolution, Usage Statistics, and Bug Patterns
    Hu, Mingzhe
    Zhang, Yu
    PROCEEDINGS OF THE 2020 IEEE 27TH INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION, AND REENGINEERING (SANER '20), 2020, : 532 - 536