On algebraic points in the plane near smooth curves

被引:2
作者
Bernik, Vasilii [1 ]
Goetze, Friedrich [2 ]
Kukso, Olga [1 ]
机构
[1] Inst Math, Minsk 220072, BELARUS
[2] Univ Bielefeld, Fac Math, D-33501 Bielefeld, Germany
关键词
Diophantine approximation; metric number theory; algebraic conjugate numbers; algebraic numbers in short intervals; DIOPHANTINE APPROXIMATION; VALUES;
D O I
10.1007/s10986-014-9241-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, we solve the problem on the number of points with algebraic real coordinates near smooth curve. This question is a natural extension of the problems of number theory connected with integer points in the domains and the rational numbers near curves. The main idea of the proof is based on the metric theory on Diophantine approximations.
引用
收藏
页码:231 / 251
页数:21
相关论文
共 12 条
[1]  
[Anonymous], 1980, LECT NOTES MATH
[2]   Diophantine approximation on planar curves and the distribution of rational points [J].
Beresnevich, Victor ;
Dickinson, Detta ;
Velani, Sanju ;
Vaughan, R. C. .
ANNALS OF MATHEMATICS, 2007, 166 (02) :367-426
[3]  
Bernik V., 1980, IZV AKAD NAUK SSSR M, V44, P24
[4]  
Bernik V. I., 1999, Cambridge Tracts in Mathematics, V137
[5]  
BERNIK VI, 1989, ACTA ARITH, V53, P17
[6]  
BERNIK VI, 1983, ACTA ARITH, V42, P219
[7]  
Cassels J.W.S., 1957, CAMBR TRACTS MATH MA, V45
[8]   Lattice point problems and values of quadratic forms [J].
Götze, F .
INVENTIONES MATHEMATICAE, 2004, 157 (01) :195-226
[9]  
Huxley M. N., 1996, Area, Lattice points, and Exponential sums, V13
[10]  
Karatsuba A. A., 1993, BASIC ANAL NUMBER TH, V2nd, DOI DOI 10.1007/978-3-642-58018-5