Laurent skew orthogonal polynomials and related symplectic matrices

被引:1
作者
Miki, Hiroshi [1 ]
机构
[1] Meteorol Coll, Asahi Cho, Kashiwa, Chiba 2770852, Japan
关键词
Skew orthogonal polynomials; Orthogonal polynomials; Symplectic matrices; Symplectic matrix pencils; Butterfly form; ALGORITHM; SR;
D O I
10.1016/j.jat.2020.105483
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Particular class of skew orthogonal polynomials are introduced and investigated, which possess Laurent symmetry. They are also shown to appear as eigenfunctions of symplectic generalized eigenvalue problems. Furthermore, the modification of these polynomials gives some symplectic eigenvalue problem and the corresponding symplectic matrix is equivalent to butterfly matrix, which is a canonical form of symplectic matrices. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:14
相关论文
共 24 条
[1]   Classical skew orthogonal polynomials and random matrices [J].
Adler, M ;
Forrester, PJ ;
Nagao, T ;
van Moerbeke, P .
JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (1-2) :141-170
[2]  
Adler M, 1999, INT MATH RES NOTICES, V1999, P569
[3]  
[Anonymous], 1957, Trans. Amer. Math. Soc., DOI DOI 10.1090/S0002-9947-1957-0091566-1
[4]  
[Anonymous], SYSTEMS NETWORKS MAT
[5]  
[Anonymous], 1978, MATH ITS APPL
[6]  
Benner P, 1998, LINEAR ALGEBRA APPL, V276, P19
[7]   SR and SZ algorithms for the symplectic (butterfly) eigenproblem [J].
Benner, P ;
Fassbender, H ;
Watkins, DS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :41-76
[8]   A SYMPLECTIC QR LIKE ALGORITHM FOR THE SOLUTION OF THE REAL ALGEBRAIC RICCATI EQUATION [J].
BUNSEGERSTNER, A ;
MEHRMANN, V .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (12) :1104-1113
[9]   Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle [J].
Cantero, MJ ;
Moral, L ;
Velázquez, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :29-56
[10]   Partial-Skew-Orthogonal Polynomials and Related Integrable Lattices with Pfaffian Tau-Functions [J].
Chang, Xiang-Ke ;
He, Yi ;
Hu, Xing-Biao ;
Li, Shi-Hao .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 364 (03) :1069-1119