Design considerations for 1.06-μm InGaAsP-InP Geiger-mode avalanche photodiodes

被引:116
作者
Donnelly, Joseph P. [1 ]
Duerr, Erik K. [1 ]
McIntosh, K. Alex [1 ]
Dauler, Eric A. [1 ]
Oakley, Douglas C. [1 ]
Groves, Steven H. [1 ]
Vineis, Christopher J. [1 ]
Mahoney, Leonard J. [1 ]
Molvar, Karen M. [1 ]
Hopman, Pablo I. [1 ]
Jensen, Katharine Estelle [1 ]
Smith, Gary M. [1 ]
Verghese, Simon [1 ]
Shaver, David C. [1 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02420 USA
关键词
avalanche photodiodes; Geiger-mode avalanche photodiodes; photodiodes; semiconductor device modeling; single-photon detection;
D O I
10.1109/JQE.2006.877300
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For Geiger-mode avalanche photodiodes, the two most important performance metrics for most applications are dark count rate (DCR) and photon detection efficiency (PDE). In 1.06-mu m separate-absorber-avalanche (multiplier) InP-based devices, the primary sources of dark counts are tunneling through defect levels in the InP avalanche region and thermal generation in the InGaAsP absorber region. PDE is the probability that a photon will be absorbed (quantum efficiency) times the probability that the electron-hole pair generated will actually cause an avalanche. A device model based on experimental data that can simultaneously predict DCR and PDE as a function of overbias and temperature is presented. This model has been found useful in predicting changes in performance as various device parameters, such as avalanche layer thickness, are modified. This has led to designs that are capable simultaneously of low DCR and high PDE.
引用
收藏
页码:797 / 809
页数:13
相关论文
共 37 条
[1]  
Albota M. A., 2002, Lincoln Laboratory Journal, V13, P351
[2]  
[Anonymous], PHYS SEMICONDUCTOR D
[3]   Resonant-cavity-enhanced avalanche photodiodes grown by molecular beam epitaxy on InP for detection near 1.55 μm [J].
Anselm, KA ;
Nie, H ;
Lenox, C ;
Hansing, C ;
Campbell, JC ;
Streetman, BG .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1998, 16 (03) :1426-1429
[4]   IMPACT IONIZATION IN (100)-ORIENTED, (110)-ORIENTED, AND (111)-ORIENTED INP AVALANCHE PHOTO-DIODES [J].
ARMIENTO, CA ;
GROVES, SH .
APPLIED PHYSICS LETTERS, 1983, 43 (02) :198-200
[5]  
Aull B. F., 2002, Lincoln Laboratory Journal, V13, P335
[6]   MLCD: Overview of NASA's mars laser communications demonstration system [J].
Boroson, DM ;
Biswas, A ;
Edwards, BL .
FREE-SPACE LASER COMMUNICATION TECHNOLOGIES XVI, 2004, 5338 :16-28
[7]   ELECTRON AND HOLE IMPACT IONIZATION COEFFICIENTS IN INP DETERMINED BY PHOTOMULTIPLICATION MEASUREMENTS [J].
COOK, LW ;
BULMAN, GE ;
STILLMAN, GE .
APPLIED PHYSICS LETTERS, 1982, 40 (07) :589-591
[8]   Avalanche photodiodes and quenching circuits for single-photon detection [J].
Cova, S ;
Ghioni, M ;
Lacaita, A ;
Samori, C ;
Zappa, F .
APPLIED OPTICS, 1996, 35 (12) :1956-1976
[9]   TRAPPING PHENOMENA IN AVALANCHE PHOTODIODES ON NANOSECOND SCALE [J].
COVA, S ;
LACAITA, A ;
RIPAMONTI, G .
IEEE ELECTRON DEVICE LETTERS, 1991, 12 (12) :685-687
[10]   PHOTON-COUNTING TECHNIQUES WITH SILICON AVALANCHE PHOTODIODES [J].
DAUTET, H ;
DESCHAMPS, P ;
DION, B ;
MACGREGOR, AD ;
MACSWEEN, D ;
MCINTYRE, RJ ;
TROTTIER, C ;
WEBB, PP .
APPLIED OPTICS, 1993, 32 (21) :3894-3900