Neural Network Using to Analyze the Results of Environmental Monitoring of Water

被引:2
|
作者
Usachev, V. A. [1 ]
Voronova, L., I [1 ]
Voronov, V., I [1 ]
Zharov, I. A. [1 ]
Strelnikov, V. G. [1 ]
机构
[1] Moscow Tech Univ Commun & Informat, Moscow, Russia
来源
2019 SYSTEMS OF SIGNALS GENERATING AND PROCESSING IN THE FIELD OF ON BOARD COMMUNICATIONS | 2019年
关键词
big data; neural network; machine learning; water quality monitoring; sensors;
D O I
10.1109/sosg.2019.8706733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The acuteness of the environmental tracking problem is constantly growing. Currently, environmental issues are analyzed using big data. Many open data sources (Kaggle, Open Data Portal of the Russian Federation, etc.) contain a variety of environmental information. Based on the data and using the tools for analyzing big data and machine learning, a system has been developed that simulates the state of water quality in the Moscow waters. On the basis of the indicators obtained, the neural network was trained, which classifies the state of the reservoir into good and deviant.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Drinking water quality detection using genetic neural network
    Sajan, R. Isaac
    Christopher, V. Bibin
    Akhila, T. S.
    Kavitha, M. Joselin
    INTERNATIONAL JOURNAL OF GLOBAL WARMING, 2024, 32 (03) : 267 - 281
  • [32] Attempts to parameterize cloud water profiles using a neural network
    Michelson, D. B.
    Landelius, T.
    Jones, C. G.
    Collier, C. G.
    ATMOSPHERIC SCIENCE LETTERS, 2004, 5 (07): : 141 - 145
  • [33] Greenhouse environmental monitoring and control system based on improved fuzzy PID and neural network algorithms
    Guan, Hongqiang
    JOURNAL OF INTELLIGENT SYSTEMS, 2025, 34 (01)
  • [34] Application of topic modelling and neural network analysis to analyze life satisfaction
    Choi, Young-Chool
    TRANSINFORMACAO, 2024, 36
  • [35] IoT-Based Automatic Water Quality Monitoring System with Optimized Neural Network
    Bamini, A. M. Anusha
    Chitra, R.
    Agarwal, Saurabh
    Kim, Hyunsung
    Stephan, Punitha
    Stephan, Thompson
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (01): : 46 - 63
  • [36] Leak localization in an urban water distribution network using a LSTM deep neural network
    Gomez-Coronel, L.
    Santos-Ruiz, I
    Blesa, J.
    Puig, V
    Lopez-Estrada, F. R.
    IFAC PAPERSONLINE, 2024, 58 (04): : 79 - 84
  • [37] Robust technique for environmental sound classification using convolutional recurrent neural network
    Anam Bansal
    Naresh Kumar Garg
    Multimedia Tools and Applications, 2024, 83 : 54755 - 54772
  • [38] Using neural network for predicting hourly origin-destination matrices from trip data and environmental information
    Hassanzadeh, Ehsan
    Amini, Zahra
    SCIENTIA IRANICA, 2024, 31 (19) : 1711 - 1726
  • [39] Biotrickling filtration of n-butanol vapors: process monitoring using electronic nose and artificial neural network
    Bartosz Szulczyński
    Piotr Rybarczyk
    Milena Gospodarek
    Jacek Gębicki
    Monatshefte für Chemie - Chemical Monthly, 2019, 150 : 1667 - 1673
  • [40] Biotrickling filtration of n-butanol vapors: process monitoring using electronic nose and artificial neural network
    Szulczynski, Bartosz
    Rybarczyk, Piotr
    Gospodarek, Milena
    Gebicki, Jacek
    MONATSHEFTE FUR CHEMIE, 2019, 150 (09): : 1667 - 1673