Self-consistent electron-THF cross sections derived using data-driven swarm analysis with a neural network model

被引:16
作者
Stokes, P. W. [1 ]
Casey, M. J. E. [1 ]
Cocks, D. G. [2 ]
de Urquijo, J. [3 ]
Garcia, G. [4 ]
Brunger, M. J. [5 ,6 ]
White, R. D. [1 ]
机构
[1] James Cook Univ, Coll Sci & Engn, Townsville, Qld 4811, Australia
[2] Australian Natl Univ, Res Sch Phys, Canberra, ACT 0200, Australia
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[4] CSIC, Inst Fis Fundamental, Serrano 113 Bis, Madrid 28006, Spain
[5] Flinders Univ S Australia, Coll Sci & Engn, Adelaide, SA 5042, Australia
[6] UCSI Univ, Fac Business & Management, Dept Actuarial Sci & Appl Stat, Kuala Lumpur 56000, Malaysia
基金
澳大利亚研究理事会;
关键词
swarm analysis; machine learning; artificial neural network; biomolecule; LOW-ENERGY ELECTRONS; MOMENTUM-TRANSFER; TETRAHYDROFURFURYL ALCOHOL; VIBRATIONAL-EXCITATION; TRANSPORT-COEFFICIENTS; BOLTZMANN-EQUATION; SCATTERING; DNA; IMPACT; STERILIZATION;
D O I
10.1088/1361-6595/abb4f6
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a set of self-consistent cross sections for electron transport in gaseous tetrahydrofuran (THF), that refines the set published in our previous study [1] by proposing modifications to the quasielastic momentum transfer, neutral dissociation, ionisation and electron attachment cross sections. These adjustments are made through the analysis of pulsed-Townsend swarm transport coefficients, for electron transport in pure THF and in mixtures of THF with argon. To automate this analysis, we employ a neural network model that is trained to solve this inverse swarm problem for realistic cross sections from the LXCat project. The accuracy, completeness and self-consistency of the proposed refined THF cross section set is assessed by comparing the analyzed swarm transport coefficient measurements to those simulated via the numerical solution of Boltzmann's equation.
引用
收藏
页数:10
相关论文
共 84 条
[1]   Total dissociative electron attachment cross sections for molecular constituents of DNA [J].
Aflatooni, K. ;
Scheer, A. M. ;
Burrow, P. D. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (05)
[2]   Biomolecular Damage Induced by Ionizing Radiation: The Direct and Indirect Effects of Low-Energy Electrons on DNA [J].
Alizadeh, Elahe ;
Orlando, Thomas M. ;
Sanche, Leon .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 66, 2015, 66 :379-398
[3]   Absolute angle-differential elastic and vibrational excitation cross sections for electron collisions with tetrahydrofuran [J].
Allan, M. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2007, 40 (17) :3531-3544
[4]  
[Anonymous], 2015, P INT C LEARNING REP
[5]  
[Anonymous], 1994, MIXTURE DENSITY NETW
[6]  
[Anonymous], 2016, ARXIV160508803CSSTAT
[7]  
[Anonymous], 2014, ARXIV PREPRINT ARXIV
[8]   Differential elastic and total electron scattering cross sections of tetrahydrofuran [J].
Baek, W. Y. ;
Bug, M. ;
Rabus, H. ;
Gargioni, E. ;
Grosswendt, B. .
PHYSICAL REVIEW A, 2012, 86 (03)
[9]   Dynamical (e,2e) studies of tetrahydrofurfuryl alcohol [J].
Bellm, S. M. ;
Builth-Williams, J. D. ;
Jones, D. B. ;
Chaluvadi, Hari ;
Madison, D. H. ;
Ning, C. G. ;
Wang, F. ;
Ma, X. G. ;
Lohmann, B. ;
Brunger, M. J. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (24)
[10]  
Boudaïffa B, 2000, SCIENCE, V287, P1658, DOI 10.1126/science.287.5458.1658