机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
Inst Math Phys & Mech, Ljubljana, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
Klavzar, Sandi
[1
,2
,3
]
Rho, Yoomi
论文数: 0引用数: 0
h-index: 0
机构:
Incheon Natl Univ, Dept Math, Inchon, South KoreaUniv Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
Rho, Yoomi
[4
]
机构:
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Incheon Natl Univ, Dept Math, Inchon, South Korea
The Fibonacci (p, r)-cube Gamma((p,r))(n) is the subgraph of Q(n) induced on binary words of length n in which there are at most r consecutive ones and there are at least p zeros between two sub-strings of ones. These cubes simultaneously generalize several interconnection networks, notably hypercubes, Fibonacci cubes, and postal networks. In this note it is proved that Gamma((p,r))(n) is a non-trivial Cartesian product if and only if p = 1 and r = n >= 2, or p = r = 2 and n >= 2, or n = p = 3 and r = 2. This rounds a result from Ou et al. (2011) asserting that Gamma((2.2))(n) are non-trivial Cartesian products. (C) 2014 Elsevier B.V. All rights reserved.
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana, Slovenia