Fibonacci (p, r)-cubes as Cartesian products

被引:0
作者
Klavzar, Sandi [1 ,2 ,3 ]
Rho, Yoomi [4 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
[4] Incheon Natl Univ, Dept Math, Inchon, South Korea
基金
新加坡国家研究基金会;
关键词
Hypercube; Fibonacci; (p; r)-cube; Cartesian product; GRAPHS; CUBES;
D O I
10.1016/j.disc.2014.03.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Fibonacci (p, r)-cube Gamma((p,r))(n) is the subgraph of Q(n) induced on binary words of length n in which there are at most r consecutive ones and there are at least p zeros between two sub-strings of ones. These cubes simultaneously generalize several interconnection networks, notably hypercubes, Fibonacci cubes, and postal networks. In this note it is proved that Gamma((p,r))(n) is a non-trivial Cartesian product if and only if p = 1 and r = n >= 2, or p = r = 2 and n >= 2, or n = p = 3 and r = 2. This rounds a result from Ou et al. (2011) asserting that Gamma((2.2))(n) are non-trivial Cartesian products. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 26
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1988, Selected Topics Graph Theory
[2]  
Djokovic D.Z., 1973, J. Comb. Th. Ser. B, V14, P263, DOI [10.1016/0095-8956(73)90010-5, DOI 10.1016/0095-8956(73)90010-5]
[3]   On generalized Fibonacci cubes and unitary transforms [J].
Egiazarian, K ;
Astola, J .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1997, 8 (05) :371-377
[4]   PRODUCT GRAPH REPRESENTATIONS [J].
FEDER, T .
JOURNAL OF GRAPH THEORY, 1992, 16 (05) :467-488
[5]  
Hammack R., 2011, Hand Book of Product Graphs
[6]   Partial Star Products: A Local Covering Approach for the Recognition of Approximate Cartesian Product Graphs [J].
Hellmuth M. ;
Imrich W. ;
Kupka T. .
Mathematics in Computer Science, 2013, 7 (3) :255-273
[7]   Approximate graph products [J].
Hellmuth, Marc ;
Imrich, Wilfried ;
Kloeckl, Werner ;
Stadler, Peter F. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1119-1133
[8]   FIBONACCI CUBES - A NEW INTERCONNECTION TOPOLOGY [J].
HSU, WJ .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1993, 4 (01) :3-12
[9]   Generalized Fibonacci cubes [J].
Ilic, Aleksandar ;
Klavzar, Sandi ;
Rho, Yoomi .
DISCRETE MATHEMATICS, 2012, 312 (01) :2-11
[10]  
Imrich Wilfried, 2008, Topics in graph theory: graphs and their cartesian product