KESTEN'S THEOREM FOR INVARIANT RANDOM SUBGROUPS

被引:82
作者
Abert, Miklos [1 ]
Glasner, Yair [2 ]
Virag, Balint [3 ,4 ]
机构
[1] Alfred Renyi Inst Math, H-1053 Budapest, Hungary
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
[3] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[4] Univ Toronto, Dept Stat, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
RAMANUJAN GRAPHS; BETTI NUMBERS;
D O I
10.1215/00127094-2410064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An invariant random subgroup of the countable group Gamma is a random subgroup of Gamma whose distribution is invariant under conjugation by all elements of Gamma. We prove that for a nonamenable invariant random subgroup H, the spectral radius of every finitely supported random walk on Gamma is strictly less than the spectral radius of the corresponding random walk on Gamma/H. This generalizes a result of Kesten who proved this for normal subgroups. As a byproduct, we show that, for a Cayley graph G of a linear group with no amenable normal subgroups, any sequence of finite quotients of G that spectrally approximates G converges to G in Benjamini-Schramm convergence. In particular, this implies that infinite sequences of finite d-regular Ramanujan-Schreier graphs have essentially large girth.
引用
收藏
页码:465 / 488
页数:24
相关论文
共 23 条
[1]  
ABERT M., 1635, PREPRINT
[2]   On the growth of Betti numbers of locally symmetric spaces [J].
Abert, Miklos ;
Bergeron, Nicolas ;
Biringer, Ian ;
Gelander, Tsachik ;
Nikolov, Nikolay ;
Raimbault, Jean ;
Samet, Iddo .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (15-16) :831-835
[3]   Processes on unimodular random networks [J].
Aldous, David ;
Lyons, Russell .
ELECTRONIC JOURNAL OF PROBABILITY, 2007, 12 :1454-1508
[4]   Asymptote of the Betti numbers, I2-invariants and laminations [J].
Bergeron, N ;
Gaboriau, D .
COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (02) :362-395
[5]  
Borel A., 1991, Linear Algebraic Groups, DOI [10.1007/978-1-4612-0941-6, DOI 10.1007/978-1-4612-0941-6]
[6]  
Chabauty C., 1950, Bull. Soc. Math. France, V78, P143
[7]  
Friedman Joel, 2003, P 35 ANN ACM S THEOR
[8]  
GREENLEAF FREDERICK P., 1969, Invariant means on topological groups and their applications, V16
[9]  
Grigorchuk R.I., 1980, ADV PROBAB RELATED T, P285
[10]  
Kesten H., 1959, Trans. Am. Math. Soc., V92, P336, DOI [DOI 10.1090/S0002-9947-1959-0109367-6, 10.1090/S0002-9947-1959-0109367-6]