On orbital-reversibility for a class of planar dynamical systems

被引:13
作者
Algaba, A. [1 ]
Checa, I. [1 ]
Garcia, C. [1 ]
Gamero, E. [2 ]
机构
[1] Univ Huelva, Dept Math, EPS, Huelva, Spain
[2] Univ Seville, Dept Appl Math 2, ESTI, Seville, Spain
关键词
Orbital-reversibility; Planar autonomous systems; Invariant curves; TIME-REVERSAL SYMMETRY; ANALYTIC INTEGRABILITY; NILPOTENT CENTERS; NORMAL FORMS; EQUIVALENCE;
D O I
10.1016/j.cnsns.2014.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give necessary conditions for the orbital-reversibility for a class of planar dynamical systems, based on properties of some invariant curves. From these necessary conditions we formulate a suitable algorithm, to detect orbital-reversibility, which is applied to a family of nilpotent systems and to a family of degenerate systems. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:229 / 239
页数:11
相关论文
共 21 条
[1]   An algorithm for computing quasi-homogeneous formal normal forms under equivalence [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
ACTA APPLICANDAE MATHEMATICAE, 2004, 80 (03) :335-359
[2]   Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
CHAOS SOLITONS & FRACTALS, 2012, 45 (06) :869-878
[3]   Centers of quasi-homogeneous polynomial planar systems [J].
Algaba, A. ;
Fuentes, N. ;
Garcia, C. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) :419-431
[4]   Quasi-homogeneous normal forms [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
García, C .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 150 (01) :193-216
[5]   Reversibility and quasi-homogeneous normal forms of vector fields [J].
Algaba, A. ;
Garcia, C. ;
Teixeira, M. A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (02) :510-525
[6]   The integrability problem for a class of planar systems [J].
Algaba, A. ;
Gamero, E. ;
Garcia, C. .
NONLINEARITY, 2009, 22 (02) :395-420
[7]   ANALYTIC INTEGRABILITY FOR SOME DEGENERATE PLANAR SYSTEMS [J].
Algaba, Antonio ;
Garcia, Cristobal ;
Gine, Jaume .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) :2797-2809
[8]   THE REVERSIBILITY PROBLEM FOR QUASI-HOMOGENEOUS DYNAMICAL SYSTEMS [J].
Algaba, Antonio ;
Gamero, Estanislao ;
Garcia, Cristobal .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (08) :3225-3236
[9]   REVERSIBILITY AND CLASSIFICATION OF NILPOTENT CENTERS [J].
BERTHIER, M ;
MOUSSU, R .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (02) :465-494
[10]   TOPOLOGICAL EQUIVALENCE OF A PLANE VECTOR FIELD WITH ITS PRINCIPAL PART DEFINED THROUGH NEWTON POLYHEDRA [J].
BRUNELLA, M ;
MIARI, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (02) :338-366