Global continuation of monotone wavefronts

被引:41
作者
Gomez, Adrian [2 ]
Trofimchuk, Sergei [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Talca, Chile
[2] Univ Bio Bio, Dept Matemat, Concepcion, Chile
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2014年 / 89卷
关键词
REACTION-DIFFUSION EQUATION; FISHER-KPP EQUATION; TRAVELING-WAVES; DELAYED-REACTION; SYSTEMS; SPEEDS;
D O I
10.1112/jlms/jdt050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish efficient existence criteria for monotone traveling fronts u = phi(nu center dot x + ct), phi(-infinity) = 0, phi(+infinity) = kappa of the monostable (and, in general, nonquasi-monotone) delayed reaction-diffusion equations u(t)(t, x) - delta u(t, x) = f(u(t, x), u(t - h, x)). The function f is of class C-1,C-gamma and it is assumed to satisfy f(0, 0) = f(kappa, kappa) = 0 together with other monostability restrictions. Our theory covers several important cases including Mackey-Glass-type diffusive equations and Kolmogorov-Petrovskii-Piskunov-Fisher-type equations. The proofs are based on a variant of the Hale-Lin functional-analytic approach to heteroclinic solutions where Lyapunov-Schmidt reduction is realized in a 'mobile' weighted space of C-2-smooth functions. This method requires a detailed analysis of a family of associated linear differential Fredholm operators: at this stage, the discrete Lyapunov functionals by Mallet-Paret and Sell are essential to the method.
引用
收藏
页码:47 / 68
页数:22
相关论文
共 28 条
[1]  
Aguerrea M, 2012, MATH ANN, V354, P73, DOI 10.1007/s00208-011-0722-8
[2]  
[Anonymous], 1989, Geometric Theory of Semilinear Parabolic Partial Differential Equations, DOI DOI 10.1007/BFB0089647
[3]   Travelling fronts for the KPP equation with spatio-temporal delay [J].
Ashwin, P ;
Bartuccelli, MV ;
Bridges, TJ ;
Gourley, SA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (01) :103-122
[4]   Variational characterization of the speed of propagation of fronts for the nonlinear diffusion equation [J].
Benguria, RD ;
Depassier, MC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 175 (01) :221-227
[5]   The non-local Fisher-KPP equation: travelling waves and steady states [J].
Berestycki, Henri ;
Nadin, Gregoire ;
Perthame, Benoit ;
Ryzhik, Lenya .
NONLINEARITY, 2009, 22 (12) :2813-2844
[6]   A General Approach for Front-Propagation in Functional Reaction-Diffusion Equations [J].
Calamai, Alessandro ;
Marcelli, Cristina ;
Papalini, Francesca .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2009, 21 (04) :567-593
[7]   MONOTONE TRAVELING WAVES FOR DELAYED LOTKA-VOLTERRA COMPETITION SYSTEMS [J].
Fang, Jian ;
Wu, Jianhong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (09) :3043-3058
[8]   Monotone wavefronts of the nonlocal Fisher-KPP equation [J].
Fang, Jian ;
Zhao, Xiao-Qiang .
NONLINEARITY, 2011, 24 (11) :3043-3054
[9]   Travelling waves for delayed reaction-diffusion equations with global response [J].
Faria, T ;
Huang, W ;
Wu, JH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2065) :229-261
[10]   Positive travelling fronts for reaction-diffusion systems with distributed delay [J].
Faria, Teresa ;
Trofimchuk, Sergei .
NONLINEARITY, 2010, 23 (10) :2457-2481