On Optimal Control Based on Parametric Gradient Approximations for Nonlinear Systems with Stochastic Parameters

被引:3
|
作者
Ito, Yuji [1 ]
Fujimoto, Kenji [2 ]
Tadokoro, Yukihiro [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 4801192, Japan
[2] Kyoto Univ, Dept Aeronaut & Astronaut, Grad Sch Engn, Nishikyo Ku, Kyoto, Kyoto 6158540, Japan
来源
2019 AMERICAN CONTROL CONFERENCE (ACC) | 2019年
关键词
D O I
10.23919/acc.2019.8815020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a design method for a suboptimal feedback controller to minimize the expectation of a cost function for uncertain nonlinear systems. The uncertainty is described by time-invariant stochastic parameters, which cause difficulties in solving the optimal control problem. The conventional notion of the principle of optimality cannot be applied to solve this problem. Furthermore, the optimal input and the expected cost cannot be described explicitly because of the nonlinearity of the system. These difficulties are overcome by combining a parametric approximation with a gradient-based optimization method. This approach enables us to obtain the gradient of an approximated cost function in an explicit form. A Monte Carlo (MC) approximation is employed to calculate the expectation of the derived gradient with respect to the stochastic parameters. This expected gradient is used to optimize the parameter of the controller.
引用
收藏
页码:2936 / 2941
页数:6
相关论文
共 50 条
  • [41] Numerical approximations for optimal controls for stochastic systems with delays
    Kushner, Harold J.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2595 - 2602
  • [43] Performance-based optimal control for stochastic nonlinear systems with unknown dead-zone
    Li, Kewen
    Li, Yongming
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2022, 43 (01) : 283 - 303
  • [44] OPTIMAL-CONTROL OF NONLINEAR-SYSTEMS WITH DISTRIBUTED PARAMETERS
    KOLESNIKOV, KS
    KRISHCHENKO, AP
    DOKLADY AKADEMII NAUK SSSR, 1984, 277 (05): : 1088 - 1092
  • [45] LQG optimal control of discrete stochastic systems under parametric and noise uncertainties
    Hsiao, Feng-Hsiag
    Xu, Sheng-Dong
    Wu, Shih-Lin
    Lee, Gwo-Chuan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2006, 343 (03): : 279 - 294
  • [46] Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter
    Z. G. Ying
    W. Q. Zhu
    Nonlinear Dynamics, 2017, 90 : 105 - 114
  • [47] Suboptimal parametric identification of nonlinear stochastic systems
    Mamay, VI
    Sotnikov, AV
    Shchervan, OG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 2005, 48 (3-4): : 15 - 23
  • [48] System Parameters' Identification and Optimal Tracking Control for Nonlinear Systems
    Cortes Vega, David
    Ramos Paz, Serafin
    Ornelas-Tellez, Fernando
    Jesus Rico-Melgoza, J.
    IFAC PAPERSONLINE, 2018, 51 (13): : 431 - 436
  • [49] Synthesis of Stochastic Optimal Control Based on Nonlinear Probabilistic Criteria
    Sergey Boris Klepfish
    Marianna Sokolov
    Automatic Control and Computer Sciences, 2022, 56 : 421 - 427
  • [50] The maximum principle for the nonlinear stochastic optimal control problem of switching systems
    Aghayeva, Charkaz
    Abushov, Qurban
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (02) : 341 - 352