Cauchy-Laguerre Two-Matrix Model and the Meijer-G Random Point Field

被引:47
作者
Bertola, M. [1 ,2 ]
Gekhtman, M. [3 ]
Szmigielski, J. [4 ]
机构
[1] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
[2] Univ Montreal, CRM, Montreal, PQ, Canada
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[4] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Correlation Function; Random Point; Jacobi Polynomial; Universality Class; Fredholm Determinant;
D O I
10.1007/s00220-013-1833-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the general theory of Cauchy biorthogonal polynomials developed in Bertola et al. (Commun Math Phys 287(3):983-1014, 2009) and Bertola et al. (J Approx Th 162(4):832-867, 2010) to the case associated with Laguerre measures. In particular, we obtain explicit formulae in terms of Meijer-G functions for all key objects relevant to the study of the corresponding biorthogonal polynomials and the Cauchy two-matrix model associated with them. The central theorem we prove is that a scaling limit of the correlation functions for eigenvalues near the origin exists, and is given by a new determinantal two-level random point field, the Meijer-G random field. We conjecture that this random point field leads to a novel universality class of random fields parametrized by exponents of Laguerre weights. We express the joint distributions of the smallest eigenvalues in terms of suitable Fredholm determinants and evaluate them numerically. We also show that in a suitable limit, the Meijer-G random field converges to the Bessel random field and hence the behavior of the eigenvalues of one of the two matrices converges to the one of the Laguerre ensemble.
引用
收藏
页码:111 / 144
页数:34
相关论文
共 26 条
[1]  
[Anonymous], 1944, Ordinary Differential Equations
[2]  
[Anonymous], 2010, CAMBRIDGE STUDIES AD
[3]  
[Anonymous], ASYMPTOTIC ANAL 2 MA
[4]  
[Anonymous], 1981, Higher Transcendental Functions
[5]  
[Anonymous], 1969, MATH SCI ENG
[6]  
[Anonymous], 2004, RANDOM MATRICES
[7]  
[Anonymous], 1969, MATH SCI ENG
[8]   Regularity of a vector potential problem and its spectral curve [J].
Balogh, F. ;
Bertola, M. .
JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) :353-370
[9]   Strong asymptotics for Cauchy biorthogonal polynomials with application to the Cauchy two-matrix model [J].
Bertola, M. ;
Gekhtman, M. ;
Szmigielski, J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
[10]   Riemann-Hilbert approach to multi-time processes: The Airy and the Pearcey cases [J].
Bertola, M. ;
Cafasso, M. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (23-24) :2237-2245