Blow-up and global asymptotics of the limit unstable Cahn-Hilliard equation

被引:34
作者
Evans, J. D. [1 ]
Galaktionov, V. A.
Williams, J. F.
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V6T 1Z2, Canada
关键词
semilinear parabolic equation; similarity solutions; blow-up; asymptotic behavior;
D O I
10.1137/S0036141004440289
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of classes of global and blow-up solutions of a semilinear parabolic equation of the "limit" Cahn-Hilliard type u(t) = -Delta(Delta u + | u|(p-1)u) in R-N x R+, p> 1, with bounded integrable initial data. We show that in some {p, N}-parameter ranges it admits a countable set of blow-up similarity patterns. The most interesting set of blow-up solutions is constructed at the first critical exponent p = p(0) = 1+2/N N, where the first simplest pro. le is shown to be stable. Unlike the blow-up case, we show that, for p = p(0), the set of global decaying source-type similarity solutions is continuous and determine the stable mass-branch. We prove that there exists a countable spectrum of critical exponents {p = p(l) = 1+ 2/ N+l, l = 0, 1, 2,...} creating bifurcation branches, which play a key role in general description of solutions globally decaying as t--> infinity.
引用
收藏
页码:64 / 102
页数:39
相关论文
共 37 条
[1]  
Admaev O.V., 1997, 3 COMP CTR
[2]  
Barenblatt G, 1979, SIMILARITY SELF SIMI, DOI 10.1007/978-1-4615-8570-1
[3]   SINGULARITIES IN A MODIFIED KURAMOTO-SIVASHINSKY EQUATION DESCRIBING INTERFACE MOTION FOR PHASE-TRANSITION [J].
BERNOFF, AJ ;
BERTOZZI, AL .
PHYSICA D, 1995, 85 (03) :375-404
[4]  
Bertozzi AL, 1998, COMMUN PUR APPL MATH, V51, P625, DOI 10.1002/(SICI)1097-0312(199806)51:6<625::AID-CPA3>3.3.CO
[5]  
2-2
[6]  
Bertozzi AL, 2000, INDIANA U MATH J, V49, P1323
[7]   Self-similar blow-up in higher-order semilinear parabolic equations [J].
Budd, CJ ;
Galaktionov, VA ;
Williams, JF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (05) :1775-1809
[8]   Moving mesh methods for problems with blow-up [J].
Budd, CJ ;
Huang, WH ;
Russell, RD .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02) :305-327
[9]  
BUDD CJ, UNPUB OPTIMAL GRIDS
[10]  
Coddington N., 1955, THEORY ORDINARY DIFF