DTA:Double LSTM with Temporal-wise Attention Network for Action Recognition
被引:0
|
作者:
Xu, Yangyang
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Normal Univ, Guilin, Peoples R China
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Virtual Real & Human Interact Te, Shenzhen, Peoples R ChinaGuangxi Normal Univ, Guilin, Peoples R China
Xu, Yangyang
[1
,2
]
Wang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Virtual Real & Human Interact Te, Shenzhen, Peoples R China
Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R ChinaGuangxi Normal Univ, Guilin, Peoples R China
Wang, Lei
[2
,3
]
Cheng, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Virtual Real & Human Interact Te, Shenzhen, Peoples R China
Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R ChinaGuangxi Normal Univ, Guilin, Peoples R China
Cheng, Jun
[2
,3
]
Xia, Haiying
论文数: 0引用数: 0
h-index: 0
机构:
Guangxi Normal Univ, Guilin, Peoples R ChinaGuangxi Normal Univ, Guilin, Peoples R China
Xia, Haiying
[1
]
Yin, Jianqin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Sch Automat, Beijing, Peoples R ChinaGuangxi Normal Univ, Guilin, Peoples R China
Yin, Jianqin
[4
]
机构:
[1] Guangxi Normal Univ, Guilin, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen Key Lab Virtual Real & Human Interact Te, Shenzhen, Peoples R China
[3] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Automat, Beijing, Peoples R China
来源:
PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC)
|
2017年
基金:
中国国家自然科学基金;
关键词:
Action Recognition;
CNN;
LSTM;
Attention Model;
D O I:
暂无
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
In this paper, we propose a new architecture for human action recognition by using a convolution neural networks (CNN) and two Long Short-Term Memory(LSTM) networks with temporal-wise attention model. We call this network the Double LSTM with Temporal-wise Attention network (DTA). The features extracted by our model are both spatially and temporally. The attention model can learn which parts in which frames in a video are relevant to the video label and pay more attention on them. We designed a joint optimization layer (JOL) to jointly process two kinds of feature produced by two LSTMs. The proposed networks achieved improved performance on three widely used datasets-the UCF Sports dataset, the UCF11 dataset and the HMDB51 dataset.
机构:
East China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R ChinaEast China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Yang, Changxuan
Mei, Feng
论文数: 0引用数: 0
h-index: 0
机构:
East China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R ChinaEast China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Mei, Feng
Zang, Tuo
论文数: 0引用数: 0
h-index: 0
机构:
East China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R ChinaEast China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Zang, Tuo
Tu, Jianfeng
论文数: 0引用数: 0
h-index: 0
机构:
East China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R ChinaEast China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Tu, Jianfeng
Jiang, Nan
论文数: 0引用数: 0
h-index: 0
机构:
East China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R ChinaEast China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Jiang, Nan
Liu, Lingfeng
论文数: 0引用数: 0
h-index: 0
机构:
East China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Jiangxi Minxuan Intelligent Technol Co Ltd, Nanchang 330029, Peoples R ChinaEast China JiaoTong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China