ksRepo: a generalized platform for computational drug repositioning

被引:34
作者
Brown, Adam S. [1 ]
Kong, Sek Won [2 ]
Kohane, Isaac S. [1 ]
Patel, Chirag J. [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biomed Informat, Boston, MA 02115 USA
[2] Boston Childrens Hosp, Boston, MA 02115 USA
来源
BMC BIOINFORMATICS | 2016年 / 17卷
基金
美国国家卫生研究院;
关键词
Repositioning; Drug discovery; Prostate cancer; Gene expression; CONNECTIVITY MAP; DISCOVERY; IDENTIFICATION; THERAPY; PREDICT;
D O I
10.1186/s12859-016-0931-y
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Repositioning approved drug and small molecules in novel therapeutic areas is of key interest to the pharmaceutical industry. A number of promising computational techniques have been developed to aid in repositioning, however, the majority of available methodologies require highly specific data inputs that preclude the use of many datasets and databases. There is a clear unmet need for a generalized methodology that enables the integration of multiple types of both gene expression data and database schema. Results: ksRepo eliminates the need for a single microarray platform as input and allows for the use of a variety of drug and chemical exposure databases. We tested ksRepo's performance on a set of five prostate cancer datasets using the Comparative Toxicogenomics Database (CTD) as our database of gene-compound interactions. ksRepo successfully predicted significance for five frontline prostate cancer therapies, representing a significant enrichment from over 7000 CTD compounds, and achieved specificity similar to other repositioning methods. Conclusions: We present ksRepo, which enables investigators to use any data inputs for computational drug repositioning. ksRepo is implemented in a series of four functions in the R statistical environment under a BSD3 license. Source code is freely available at http://github.com/adam-sam-brown/ksRepo. A vignette is provided to aid users in performing ksRepo analysis.
引用
收藏
页数:5
相关论文
共 30 条
  • [1] [Anonymous], 2008, R: A language and environment for statistical computing
  • [2] Identification of the Transcription Factor Single-Minded Homologue 2 as a Potential Biomarker and Immunotherapy Target in Prostate Cancer
    Arredouani, Mohamed S.
    Lu, Bin
    Bhasin, Manoj
    Eljanne, Miriam
    Yue, Wen
    Mosquera, Juan-Miguel
    Bubley, Glenn J.
    Li, Vivian
    Rubin, Mark A.
    Libermann, Towia A.
    Sanda, Martin G.
    [J]. CLINICAL CANCER RESEARCH, 2009, 15 (18) : 5794 - 5802
  • [3] NCBI GEO: archive for functional genomics data sets-update
    Barrett, Tanya
    Wilhite, Stephen E.
    Ledoux, Pierre
    Evangelista, Carlos
    Kim, Irene F.
    Tomashevsky, Maxim
    Marshall, Kimberly A.
    Phillippy, Katherine H.
    Sherman, Patti M.
    Holko, Michelle
    Yefanov, Andrey
    Lee, Hyeseung
    Zhang, Naigong
    Robertson, Cynthia L.
    Serova, Nadezhda
    Davis, Sean
    Soboleva, Alexandra
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D991 - D995
  • [4] High-throughput Drug Repositioning for the Discovery of New Treatments for Chagas Disease
    Bellera, Carolina L.
    Sbaraglini, Maria L.
    Balcazar, Dario E.
    Fraccaroli, Laura
    Cristina Vanrell, M.
    Florencia Casassa, A.
    Labriola, Carlos A.
    Romano, Patricia S.
    Carrillo, Carolina
    Talevi, Alan
    [J]. MINI-REVIEWS IN MEDICINAL CHEMISTRY, 2015, 15 (03) : 182 - 193
  • [5] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [6] Carlson Marc., 2015, Genome wide annotation for Human. R package version 3.1.2
  • [7] The Comparative Toxicogenomics Database's 10th year anniversary: update 2015
    Davis, Allan Peter
    Grondin, Cynthia J.
    Lennon-Hopkins, Kelley
    Saraceni-Richards, Cynthia
    Sciaky, Daniela
    King, Benjamin L.
    Wiegers, Thomas C.
    Mattingly, Carolyn J.
    [J]. NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) : D914 - D920
  • [8] PREDICT: a method for inferring novel drug indications with application to personalized medicine
    Gottlieb, Assaf
    Stein, Gideon Y.
    Ruppin, Eytan
    Sharan, Roded
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2011, 7
  • [9] Identification of novel therapeutics for complex diseases from genome-wide association data
    Grover, Mani P.
    Ballouz, Sara
    Mohanasundaram, Kaavya A.
    George, Richard A.
    Sherman, Craig D. H.
    Crowley, Tamsyn M.
    Wouters, Merridee A.
    [J]. BMC MEDICAL GENOMICS, 2014, 7
  • [10] DMAP: a connectivity map database to enable identification of novel drug repositioning candidates
    Huang, Hui
    Thanh Nguyen
    Ibrahim, Sara
    Shantharam, Sandeep
    Yue, Zongliang
    Chen, Jake Y.
    [J]. BMC BIOINFORMATICS, 2015, 16