Boosting k-nearest neighbor classifier by means of input space projection

被引:80
作者
Garcia-Pedrajas, Nicolas [1 ]
Ortiz-Boyer, Domingo [1 ]
机构
[1] Univ Cordoba, Dept Comp & Numer Anal, E-14071 Cordoba, Spain
关键词
k-Nearest neighbors; Boosting; Subspace methods; TESTS;
D O I
10.1016/j.eswa.2009.02.065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The k-nearest neighbors classifier is one of the most widely used methods of classification due to several interesting features, such as good generalization and easy implementation. Although simple, it is usually able to match, and even beat, more sophisticated and complex methods. However, no successful method has been reported so far to apply boosting to k-NN. As boosting methods have proved very effective in improving the generalization capabilities of many classification algorithms, proposing an appropriate application of boosting to k-nearest neighbors is of great interest. Ensemble methods rely on the instability of the classifiers to improve their performance, as k-NN is fairly stable with respect to resampling, these methods fail in their attempt to improve the performance of k-NN classifier. On the other hand, k-NN is very sensitive to input selection. In this way, ensembles based on subspace methods are able to improve the performance of single k-NN classifiers. In this paper we make use of the sensitivity of k-NN to input space for developing two methods for boosting k-NN. The two approaches modify the view of the data that each classifier receives so that the accurate classification of difficult instances is favored. The two approaches are compared with the classifier alone and bagging and random subspace methods with a marked and significant improvement of the generalization error. The comparison is performed using a large test set of 45 problems from the UCI Machine Learning Repository. A further study on noise tolerance shows that the proposed methods are less affected by class label noise than the standard methods. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10570 / 10582
页数:13
相关论文
共 42 条
[1]   Moderating k-NN classifiers [J].
Alkoot, FM ;
Kittler, J .
PATTERN ANALYSIS AND APPLICATIONS, 2002, 5 (03) :326-332
[2]   Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation [J].
Altincay, Hakan .
APPLIED SOFT COMPUTING, 2007, 7 (03) :1072-1083
[3]   Boosting the distance estimation -: Application to the K-Nearest Neighbor Classifier [J].
Amores, J ;
Sebe, N ;
Radeva, P .
PATTERN RECOGNITION LETTERS, 2006, 27 (03) :201-209
[4]  
[Anonymous], 2000, ICML
[5]  
[Anonymous], 1986, PRINCIPAL COMPONENT, DOI DOI 10.1007/978-1-4757-1904-87
[6]  
Athitsos V., 2005, CVPR 05, P45
[7]  
Bao YG, 2004, LECT NOTES COMPUT SC, V3177, P634
[8]   An empirical comparison of voting classification algorithms: Bagging, boosting, and variants [J].
Bauer, E ;
Kohavi, R .
MACHINE LEARNING, 1999, 36 (1-2) :105-139
[9]  
Bay S. D., 1999, Intelligent Data Analysis, V3, P191, DOI 10.1016/S1088-467X(99)00018-9
[10]  
Breiman L, 1996, MACH LEARN, V24, P49