Fourier Meets Mobius: Fast Subset Convolution

被引:193
作者
Bjorklund, Andreas [1 ]
Husfeldt, Thore [1 ]
Kaski, Petteri
Koivisto, Mikko
机构
[1] Lund Univ, Dept Comp Sci, SE-22100 Lund, Sweden
来源
STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING | 2007年
关键词
Convolution; Mobius transform; Steiner tree;
D O I
10.1145/1250790.1250801
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a fast algorithm for the subset convolution problem: given functions f and g defined on the lattice of subsets of an n-element set N, compute their subset convolution f * g, defined for all S subset of N by (f * g)(S) = Sigma(T subset of S)f(T)g(S\T), where addition and multiplication is carried out in an arbitrary ring. Via Mobius transform and inversion, our algorithm evaluates the subset convolution in O(n(2) 2(n)) additions and multiplications, substantially iniproving upon the straightforward 0(3(n)) algorithm. Specifically, if the input functions have an integer range {-M, -M+1, ..., . All), their subset convolution over the ordinary sum-product ring can be computed in (O) over tilde (2(n)log M) time; the notation (O) over tilde suppresses polylogarithmic factors. Furthermore, using a standard embedding technique we can compute the Subset convolution over the max-sum or main-sum semiring in (O) over tilde (2(n) M) time. To demonstrate the applicability of fast subset convolution we present the first (O) over tilde (2(k)n(2) + nm) algorithm for the Steiner tree problem in graphs with n vertices, k terminals, and m edges with bounded integer weights, improving upon the (O) over tilde (3(k)n+2(k)+nm) time bound of the classical Dreyfus-Wagner algorithm. We also discuss extensions to recent (O) over tilde (2(n))-time algorithms for covering and partitioning problems (Bjorklund and Husfeldt, FOCS 2006; Koivisto, FOCS 2006).
引用
收藏
页码:67 / 74
页数:8
相关论文
共 28 条
  • [1] Aigner M., 1979, COMBINATORIAL THEORY
  • [2] COLOR-CODING
    ALON, N
    YUSTER, R
    ZWICK, U
    [J]. JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1995, 42 (04): : 844 - 856
  • [3] [Anonymous], 35 COMM BUR SOIL SCI
  • [4] BELLOCH GE, 2006, LECT NOTES COMPUTER, V4051, P667
  • [5] Björklund A, 2006, ANN IEEE SYMP FOUND, P575
  • [6] MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS
    COPPERSMITH, D
    WINOGRAD, S
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) : 251 - 280
  • [7] DREYFUS SE, 1971, NETWORKS, V1, P195
  • [8] FUCHS B, MATH METH O IN PRESS
  • [9] FUCHS B, THEORY COMP IN PRESS
  • [10] FURER M, 2007, P 39 ACM S THEOR COM