Global weighted regularity for the 3D axisymmetric MHD equations

被引:1
作者
Guo, Zhengguang [1 ]
Wang, Yufei [2 ]
Li, Yeping [3 ]
机构
[1] Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Peoples R China
[2] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
[3] Nantong Univ, Sch Sci, Nantong 226019, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 04期
关键词
MHD equations; Weighted regularity; Axisymmetric solutions; NAVIER-STOKES EQUATIONS; ONE CURRENT-DENSITY; ONE VELOCITY; WEAK SOLUTIONS; CRITERIA; SYSTEM; COMPONENT;
D O I
10.1007/s00033-022-01815-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the three-dimensional axisymmetric incompressible magnetohydrodynamic (MHD) equations with nonzero swirl. By using symmetric properties of the Riesz transform and Hardy-Sobolev inequalities, we establish some new weighted regularity criteria via partial components of velocity and magnetic fields.
引用
收藏
页数:24
相关论文
共 56 条
[1]  
[Anonymous], 2013, INT J PURE APPL MATH, DOI DOI 10.12732/IJPAM.V86I2.16
[2]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[3]   Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid [J].
Borrelli, A. ;
Giantesio, G. ;
Patria, M. C. ;
Rosca, N. C. ;
Rosca, A. V. ;
Pop, I. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 :1-13
[4]   Effect of a non-uniform external magnetic field on the 3D stagnation-point flow [J].
Borrelli, A. ;
Giantesio, G. ;
Patria, M. C. .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2014, 48 :210-217
[5]   Two regularity criteria for the 3D MHD equations [J].
Cao, Chongsheng ;
Wu, Jiahong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (09) :2263-2274
[6]   On the regularity of the axisymmetric solutions of the Navier-Stokes equations [J].
Chae, D ;
Lee, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (04) :645-671
[7]   REGULARITY OF 3D AXISYMMETRIC NAVIER-STOKES EQUATIONS [J].
Chen, Hui ;
Fang, Daoyuan ;
Zhang, Ting .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (04) :1923-1939
[8]   A New Regularity Criterion for the 3D MHD Equations Involving Partial Components [J].
Chen, Xiaochun ;
Guo, Zhengguang ;
Zhu, Mingxuan .
ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) :161-171
[9]  
DUVAUT G, 1972, ARCH RATION MECH AN, V46, P241
[10]   Regularity criteria of axisymmetric weak solutions to the 3D MHD equations [J].
Guo, Zhengguang ;
Wang, Yu ;
Li, Yeping .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (12)