Multiple Geronimus transformations

被引:21
作者
Derevyagin, M. [1 ]
Garcia-Ardila, J. C. [2 ]
Marcellan, F. [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Math, BE-3001 Heverlee, Belgium
[2] Univ Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
[3] Inst Ciencias Matemat ICMAT, Madrid, Spain
关键词
Orthogonal polynomials; Geronimus transformation; Sobolev inner products; Cholesky decomposition; Jacobi matrix; Band matrix; ORTHOGONAL POLYNOMIALS; DARBOUX TRANSFORMATIONS; INVERSE PROBLEM; PRODUCT; FUNCTIONALS; MATRICES; FORM;
D O I
10.1016/j.laa.2014.04.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider multiple Geronimus transformations and show that they lead to discrete (non-diagonal) Sobolev type inner products. Moreover, it is shown that every discrete Sobolev inner product can be obtained as a multiple Geronimus transformation. A connection with Geronimus spectral transformations for matrix orthogonal polynomials is also considered. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:158 / 183
页数:26
相关论文
共 30 条
[1]   ON ORTHOGONAL POLYNOMIALS OF SOBOLEV TYPE - ALGEBRAIC PROPERTIES AND ZEROS [J].
ALFARO, M ;
MARCELLAN, F ;
REZOLA, ML ;
RONVEAUX, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (03) :737-757
[2]   Orthogonal polynomials associated with an inverse quadratic spectral transform [J].
Alfaro, Manuel ;
Pena, Ana ;
Rezola, M. Luisa ;
Marcellan, Francisco .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) :888-900
[3]   When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials? [J].
Alfaro, Manuel ;
Marcellan, Francisco ;
Pena, Ana ;
Luisa Rezola, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (06) :1446-1452
[4]  
[Anonymous], 1933, Math. Z., DOI DOI 10.1007/BF01474575
[5]  
[Anonymous], 1995, Methods and Appl. Anal.
[6]   On the inverse problem of the product of a semi-classical form by a polynomial [J].
Beghdadi, D ;
Maroni, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (02) :377-399
[7]  
BRANQUINHO A, 1996, INT J MATH MATH SCI, V19, P643, DOI DOI 10.1155/S0161171296000919
[8]   Polynomial perturbations of bilinear functionals and Hessenberg matrices [J].
Bueno, MI ;
Marcellán, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :64-83
[9]   Darboux transformation and perturbation of linear functionals [J].
Bueno, MI ;
Marcellán, F .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 :215-242
[10]  
Bultheel A., 1991, 163 TW KU LEUV DEP C