共 48 条
Adsorption of 2,4,6-trichlorophenol by multi-walled carbon nanotubes as affected by Cu(II)
被引:127
作者:
Chen, Guang-Cai
[1
,2
]
Shan, Xiao-Quan
[1
]
Wang, Yu-Sheng
[1
]
Wen, Bei
[1
]
Pei, Zhi-Guo
[1
]
Xie, Ya-Ning
[3
]
Liu, Tao
[3
]
Pignatello, Joseph J.
[4
]
机构:
[1] Chinese Acad Sci, State Key Lab Environm Chem & Ecotoxicol, Ecoenvironm Sci Res Ctr, Beijing 100085, Peoples R China
[2] Chinese Acad Forestry, Res Inst Subtrop Forestry, Fuyang 311400, Zhejiang, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Lab, Beijing 100049, Peoples R China
[4] Connecticut Agr Expt Stn, Dept Soil & Water, New Haven, CT 06504 USA
基金:
中国国家自然科学基金;
关键词:
2,4,6-Trichlorophenol;
Cu(II);
Multi-walled carbon nanotubes;
Adsorption;
POLYCYCLIC AROMATIC-HYDROCARBONS;
HEAVY-METALS;
AQUEOUS-SOLUTIONS;
SORPTION;
WATER;
FUNCTIONALIZATION;
OXIDATION;
SITES;
LEAD;
SOIL;
D O I:
10.1016/j.watres.2009.03.002
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Adsorption equilibrium of 2,4,6-trichlorophenol (TCP) on multi-walled carbon nanotubes (MWCNTs) was investigated to explore the possibility of using MWCNTs for concentration, detection and removal of TCP from contaminated water. The adsorption of TCP on MWCNTs at pH 4 was nonlinear, reversible and best fit by a Polanyi-Manes model. Oxidation treatment increased surface area and introduced hydrophilic carboxylic groups to the defect sites of MWCNTs, hence increased the sorption of TCP and Cu(II) individually. Cu(II) suppressed the sorption of TCP on oxidized MWCNTs15A, but had little effect on as-grown MWCNTs15. TCP had no influence on Cu(II) sorption to either. The mechanisms of Cu(II) suppression effect on TCP adsorption are ascribed to the formation of surface complexes of Cu(II), which was verified by X-ray absorption spectroscopy. Cu(II) exerts a cross-linking effect of functional groups on adjacent tubes, creating a more tightly knit bundle and suppressing the condensation of TCP in the pore spaces between the tubes. The large hydration sphere around surface complexes of Cu(II) may also intrude or shield hydrophilic sites, leading to the "crowding out" of TCP around the Cu(II)-complexed sites. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2409 / 2418
页数:10
相关论文