The extension class and KMS states for Cuntz-Pimsner algebras of some bi-Hilbertian bimodules

被引:12
作者
Rennie, Adam [1 ]
Robertson, David [1 ]
Sims, Aidan [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Northfields Ave 2522, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Kasparov module; extension; Cuntz-Pimsner algebra; KMS state; C-ASTERISK-ALGEBRAS; NONCOMMUTATIVE GEOMETRY; CROSSED-PRODUCTS; GRAPH ALGEBRAS; ENDOMORPHISMS; SIMPLICITY;
D O I
10.1142/S1793525317500108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For bi-Hilbertian A-bimodules, in the sense of Kajiwara-Pinzari-Watatani, we construct a Kasparov module representing the extension class defining the Cuntz-Pimsner algebra. The construction utilises a singular expectation which is defined using the C*-module version of the Jones index for bi-Hilbertian bimodules. The Jones index data also determines a novel quasi-free dynamics and KMS states on these Cuntz-Pimsner algebras.
引用
收藏
页码:297 / 327
页数:31
相关论文
共 36 条
  • [1] CUNTZ-PIMSNER C*-ALGEBRAS AND CROSSED PRODUCTS BY HILBERT C*-BIMODULES
    Abadie, Beatriz
    Achigar, Mauricio
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1051 - 1081
  • [2] [Anonymous], 1998, Morita equivalence and continuous-trace C*algebras
  • [3] [Anonymous], 2001, Matrix Analysis and Applied Linear Algebra
  • [4] Arici F., J NONCOMPUT IN PRESS
  • [5] The Bulk-Edge Correspondence for the Quantum Hall Effect in Kasparov Theory
    Bourne, Chris
    Carey, Alan L.
    Rennie, Adam
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (09) : 1253 - 1273
  • [6] Exel's crossed product and relative Cuntz-Pimsner algebras
    BrownLowe, Nathan
    Raeburn, Iain
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 141 : 497 - 508
  • [7] Twisted cyclic theory, equivariant KK-theory and KMS states
    Carey, Alan L.
    Neshveyev, Sergey
    Nest, Ryszard
    Rennie, Adam
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 650 : 161 - 191
  • [8] Cuntz-Pimsner C*-algebras associated with subshifts
    Carlsen, Toke Meier
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (01) : 47 - 70
  • [9] Algebraic Cuntz-Pimsner rings
    Carlsen, Toke Meier
    Ortega, Eduard
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 : 601 - 653
  • [10] Dykema KJ, 2005, HOUSTON J MATH, V31, P829