WKB Analysis of Bohmian Dynamics

被引:8
作者
Figalli, A. [1 ]
Klein, C. [2 ]
Markowich, P. [3 ]
Sparber, C. [4 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Bourgogne, F-21004 Dijon, France
[3] KAUST, MCSE Div, Thuwal 239556900, Saudi Arabia
[4] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
KORTEWEG-DE-VRIES; SEMICLASSICAL LIMIT; QUANTUM DYNAMICS; SUGGESTED INTERPRETATION; GLOBAL EXISTENCE; EQUATIONS; HOMOGENIZATION; MECHANICS; STATES; TERMS;
D O I
10.1002/cpa.21487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a semiclassically scaled Schrodinger equation with WKB initial data. We prove that in the classical limit the corresponding Bohmian trajectories converge (locally in measure) to the classical trajectories before the appearance of the first caustic. In a second step we show that after caustic onset this convergence in general no longer holds. In addition, we provide numerical simulations of the Bohmian trajectories in the semiclassical regime that illustrate the above results.(c) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:581 / 620
页数:40
相关论文
共 55 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]   Semiclassical Limit of Quantum Dynamics with Rough Potentials and Well-Posedness of Transport Equations with Measure Initial Data [J].
Ambrosio, Luigi ;
Figalli, Alessio ;
Friesecke, Gero ;
Giannoulis, Johannes ;
Paul, Thierry .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (09) :1199-1242
[3]  
[Anonymous], 2010, GRADUATE STUDIES MAT
[4]  
[Anonymous], 1981, MATH PHYS APPL MATH
[5]  
Arnold A, 2004, REV MAT IBEROAM, V20, P771
[6]  
Arnold VI., 1989, MATH METHODS CLASSIC, V2nd, P60, DOI 10.1007/978-1-4757-1693-1
[7]  
BAGRINOVSKY KA, 1957, DOKL AKAD NAUK SSSR+, V115, P431
[8]  
BALL JM, 1989, LECT NOTES PHYS, V344, P207
[9]  
BARDOS C, 2012, PREPRINT
[10]   ON THE GLOBAL EXISTENCE OF BOHMIAN MECHANICS [J].
BERNDL, K ;
DURR, D ;
GOLDSTEIN, S ;
PERUZZI, G ;
ZANGHI, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (03) :647-673