High order geometric methods with exact conservation properties

被引:30
作者
Hiemstra, R. R. [1 ]
Toshniwal, D. [1 ]
Huijsmans, R. H. M. [2 ]
Gerritsma, M. I. [3 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Delft Univ Technol, Dept Marine Technol, NL-2628 CD Delft, Netherlands
[3] Delft Univ Technol, Dept Aerosp Engn, NL-2629 HT Delft, Netherlands
关键词
Compatible discretization; High order methods; Conservation principles; Stokes flow; B-splines; CONFORMING B-SPLINES; FINITE-DIFFERENCE METHODS; ISOGEOMETRIC ANALYSIS; ELEMENT-METHOD; STOKES; VOLUME; FLOW;
D O I
10.1016/j.jcp.2013.09.027
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Conservation laws in, for example, electromagnetism, solid and fluid mechanics, allow an exact discrete representation in terms of line, surface and volume integrals. In this paper, we develop high order interpolants, from any basis that constitutes a partition of unity, which satisfy these integral relations exactly. The resulting gradient, curl and divergence conforming spaces have the property that the conservation laws become completely independent of the basis functions. Hence, they are exactly satisfied at the coarsest level of discretization and on arbitrarily curved meshes. As an illustration we apply our approach to B-splines and compute a 2D Stokes flow inside a lid driven cavity, which displays, amongst others, a point-wise divergence-free velocity field. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1444 / 1471
页数:28
相关论文
共 49 条
[1]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[2]   FINITE ELEMENT EXTERIOR CALCULUS FROM HODGE THEORY TO NUMERICAL STABILITY [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 47 (02) :281-354
[3]  
Back Aurore, 2012, ESAIM Proceedings, V35, P197, DOI 10.1051/proc/201235014
[4]  
Bazilevs Y., 2006, MATH MODELS METHODS, V16
[5]   A Locally Conservative Mimetic Least-Squares Finite Element Method for the Stokes Equations [J].
Bochev, Pavel ;
Gunzburger, Max .
LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 :637-+
[6]  
Bochev PB, 2006, IMA VOL MATH APPL, V142, P89
[7]  
Bossavit A, 2000, J JAPAN SOC APPL ELE, V7, P401
[8]  
Bossavit A, 2000, J JAPAN SOC APPL ELE, V8, P102
[9]  
Bossavit A., 1999, J. Jpn Soc. Appl. Electromagn. Mech., V7, P150
[10]  
Bossavit A., 2000, J JAPAN SOC APPL ELE, V7, P372