A note on Higgs-de Rham flows of level zero

被引:0
作者
Sheng, Mao [1 ]
Tong, Jilong [2 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Capital Normal Univ, Beijing Adv Innovat Ctr Imaging Theory & Technol, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Higgs-de Rham flows of level zero; representations of fundamental groups; deformations; Galois actions; REPRESENTATIONS; BUNDLES;
D O I
10.1007/s11425-020-1782-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The notion of Higgs-de Rham flows was introduced by Lan et al. (2019), as an analogue of Yang-Mills-Higgs flows in the complex nonabelian Hodge theory. In this paper we investigate a small part of this theory, and study those Higgs-de Rham flows which are of level zero. We improve the original definition of level-zero Higgs-de Rham flows (which works for general levels), and establish a Hitchin-Simpson-type correspondence between such objects and certain representations of fundamental groups in positive characteristic, which generalizes a classical results of Katz (1973). We compare the deformation theories of two sides in the correspondence, and translate the Galois action on the geometric fundamental groups of algebraic varieties defined over finite fields into the Higgs side.
引用
收藏
页码:307 / 330
页数:24
相关论文
共 12 条
  • [1] CREW R, 1987, P SYMP PURE MATH, V46, P111
  • [2] A conjecture on arithmetic fundamental groups
    de Jong, AJ
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2001, 121 (1) : 61 - 84
  • [3] Deligne P., 1973, Groupes de monodromie en gomtrie algbrique. II (SGA 7 II), V340
  • [4] Faltings G., 1989, ALGEBRAIC ANAL GEOME, P25
  • [5] Katz N., 1973, p-adic properties of modular schemes and modular forms. Modular functions of one variable III, V350, P69
  • [6] KATZ N, 1973, LECT NOTES MATH, V317, P167
  • [7] Katz N. M., 1970, Inst. Hautes tudes Sci. Publ. Math, P175, DOI 10.1007/BF02684688
  • [8] Krishnamoorthy R, 2020, ARXIV200500579
  • [9] Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups
    Lan, Guitang
    Sheng, Mao
    Zuo, Kang
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (10) : 3053 - 3112
  • [10] VECTOR BUNDLES ON CURVES AND REPRESENTATIONS OF ALGEBRAIC FUNDAMENTAL GROUP
    LANGE, H
    STUHLER, U
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1977, 156 (01) : 73 - 83