Estimating parameters of nonlinear dynamic systems in pharmacology using chaos synchronization and grid search

被引:14
|
作者
Pillai, Nikhil [1 ]
Schwartz, Sorell L. [2 ]
Ho, Thang [3 ]
Dokoumetzidis, Aris [4 ]
Bies, Robert [1 ,5 ]
Freedman, Immanuel [6 ]
机构
[1] SUNY Buffalo, Computat & Data Enabled Sci, Buffalo, NY USA
[2] Georgetown Univ, Med Ctr, Dept Pharmacol & Physiol, Georgetown, DC USA
[3] Vertex Pharmaceut, Boston, MA USA
[4] Univ Athens, Dept Pharmaceut Technol, Athens, Greece
[5] SUNY Buffalo, Pharmaceut Sci, Buffalo, NY USA
[6] Freedman Patent, Harleysville, PA 19438 USA
关键词
Chaos synchronization; Parameter estimation; Chaotic system; Delay differential equation; Least squares; CORTISOL; MODEL;
D O I
10.1007/s10928-019-09629-4
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Bridging fundamental approaches to model optimization for pharmacometricians, systems pharmacologists and statisticians is a critical issue. These fields rely primarily on Maximum Likelihood and Extended Least Squares metrics with iterative estimation of parameters. Our research combines adaptive chaos synchronization and grid search to estimate physiological and pharmacological systems with emergent properties by exploring deterministic methods that are more appropriate and have potentially superior performance than classical numerical approaches, which minimize the sum of squares or maximize the likelihood. We illustrate these issues with an established model of cortisol in human with nonlinear dynamics. The model describes cortisol kinetics over time, including its chaotic oscillations, by a delay differential equation. We demonstrate that chaos synchronization helps to avoid the tendency of the gradient-based optimization algorithms to end up in a local minimum. The subsequent analysis illustrates that the hybrid adaptive chaos synchronization for estimation of linear parameters with coarse-to-fine grid search for optimal values of non-linear parameters can be applied iteratively to accurately estimate parameters and effectively track trajectories for a wide class of noisy chaotic systems.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 50 条
  • [41] Chaos in nonlinear dynamic systems: Helicopter vibration mechanisms
    Taylor, James H.
    Sharif, Saied S.
    2007 MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-4, 2007, : 1055 - 1059
  • [42] Chaos theory, a modern approach of nonlinear dynamic systems
    Ene, Ioana-Elena
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2018, 28 (04): : 89 - 96
  • [43] Dynamic behavior and chaos synchronization of a simple nonlinear time-delayed system
    Xiao Jian-Xin
    Chen Ju-Fang
    Peng Jian-Hua
    ACTA PHYSICA SINICA, 2013, 62 (17)
  • [44] ALGORITHM FOR ESTIMATING THE PARAMETERS OF DYNAMIC CHARACTERISTICS OF NONLINEAR MEASURING DEVICES USING THE SENSITIVITY FUNCTION
    TSUKANOVA, NI
    SHEVYAKOV, AG
    MEASUREMENT TECHNIQUES USSR, 1989, 32 (12): : 1131 - 1134
  • [45] Study on synchronization and parameters insensitivity of a class of hyperchaotic systems using nonlinear feedback control
    Haozhou Zheng
    Jinfeng Hu
    Peng Wu
    Lidong Liu
    Zishu He
    Nonlinear Dynamics, 2012, 67 : 1515 - 1523
  • [46] Study on synchronization and parameters insensitivity of a class of hyperchaotic systems using nonlinear feedback control
    Zheng, Haozhou
    Hu, Jinfeng
    Wu, Peng
    Liu, Lidong
    He, Zishu
    NONLINEAR DYNAMICS, 2012, 67 (02) : 1515 - 1523
  • [47] Estimation of time varying parameters in nonlinear systems by using dynamic optimization
    Zhu, XM
    Xu, J
    IECON 2005: THIRTY-FIRST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, 2005, : 18 - 22
  • [48] Control of Nonlinear Systems with Symmetries using Chaos
    Reist, Philipp
    D'Andrea, Raffaello
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 997 - 1002
  • [49] Chaos Synchronization of Two Chaotic Nonlinear Gyros Using Backstepping Design
    Loembe-Souamy, Rostand M. Davy
    Jiang, Guo-Ping
    Fan, Chun-Xia
    Wang, Xin-Wei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [50] Global Chaos Synchronization of Hyperchaotic Bao and Xu Systems by Active Nonlinear Control
    Vaidyanathan, Sundarapandian
    Rasappan, Suresh
    ADVANCES IN COMPUTING AND INFORMATION TECHNOLOGY, 2011, 198 : 10 - 17