Estimating parameters of nonlinear dynamic systems in pharmacology using chaos synchronization and grid search

被引:14
|
作者
Pillai, Nikhil [1 ]
Schwartz, Sorell L. [2 ]
Ho, Thang [3 ]
Dokoumetzidis, Aris [4 ]
Bies, Robert [1 ,5 ]
Freedman, Immanuel [6 ]
机构
[1] SUNY Buffalo, Computat & Data Enabled Sci, Buffalo, NY USA
[2] Georgetown Univ, Med Ctr, Dept Pharmacol & Physiol, Georgetown, DC USA
[3] Vertex Pharmaceut, Boston, MA USA
[4] Univ Athens, Dept Pharmaceut Technol, Athens, Greece
[5] SUNY Buffalo, Pharmaceut Sci, Buffalo, NY USA
[6] Freedman Patent, Harleysville, PA 19438 USA
关键词
Chaos synchronization; Parameter estimation; Chaotic system; Delay differential equation; Least squares; CORTISOL; MODEL;
D O I
10.1007/s10928-019-09629-4
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Bridging fundamental approaches to model optimization for pharmacometricians, systems pharmacologists and statisticians is a critical issue. These fields rely primarily on Maximum Likelihood and Extended Least Squares metrics with iterative estimation of parameters. Our research combines adaptive chaos synchronization and grid search to estimate physiological and pharmacological systems with emergent properties by exploring deterministic methods that are more appropriate and have potentially superior performance than classical numerical approaches, which minimize the sum of squares or maximize the likelihood. We illustrate these issues with an established model of cortisol in human with nonlinear dynamics. The model describes cortisol kinetics over time, including its chaotic oscillations, by a delay differential equation. We demonstrate that chaos synchronization helps to avoid the tendency of the gradient-based optimization algorithms to end up in a local minimum. The subsequent analysis illustrates that the hybrid adaptive chaos synchronization for estimation of linear parameters with coarse-to-fine grid search for optimal values of non-linear parameters can be applied iteratively to accurately estimate parameters and effectively track trajectories for a wide class of noisy chaotic systems.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 50 条
  • [31] Adaptive observer design for systems with incremental quadratic constraints and nonlinear outputs - application to chaos synchronization
    Moysis, Lazaros
    Tripathi, Meenakshi
    Gupta, Mahendra Kumar
    Marwan, Muhammad
    Volos, Christos
    ARCHIVES OF CONTROL SCIENCES, 2022, 32 (01) : 105 - 121
  • [32] Chaos Synchronization of Two Uncertain Chaotic Nonlinear Gyros Using Adaptive Backstepping Design
    Davy, Loembe-Souamy Rostand. M.
    Jiang, Guo-Ping
    Fan, Chun-Xia
    Wang, Xin-Wei
    Wu, Xu
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 928 - 932
  • [33] Chaos synchronization in josephson junction using nonlinear robust adaptive controller: HIL implementation
    Khooshehmehri, Aylar
    Nasrollahi, Saeed
    Aliyari, Morteza
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2022, 10 (04) : 1228 - 1239
  • [34] Chaos synchronization of nonlinear gyros using self-learning PID control approach
    Hsu, Chun-Fei
    Tsai, Jang-Zern
    Chiu, Chien-Jung
    APPLIED SOFT COMPUTING, 2012, 12 (01) : 430 - 439
  • [35] Chaos synchronization in josephson junction using nonlinear robust adaptive controller: HIL implementation
    Aylar Khooshehmehri
    Saeed nasrollahi
    Morteza Aliyari
    International Journal of Dynamics and Control, 2022, 10 : 1228 - 1239
  • [36] Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations
    Zhang, Ruoxun
    Yang, Shiping
    NONLINEAR DYNAMICS, 2012, 69 (03) : 983 - 992
  • [37] Robust chaos synchronization of fractional-order chaotic systems with unknown parameters and uncertain perturbations
    Ruoxun Zhang
    Shiping Yang
    Nonlinear Dynamics, 2012, 69 : 983 - 992
  • [38] Measuring chaos and synchronization of chaotic satellite systems using sliding mode control
    Khan, Ayub
    Kumar, Sanjay
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2018, 39 (05) : 1597 - 1609
  • [39] A robust observer design for chaos synchronization of uncertain systems using LMI criterion
    Ma, Xiaojue
    INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2008, 3 (07): : 159 - 166
  • [40] Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters
    Liu, Shutang
    Liu, Ping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (06) : 3046 - 3055