Estimating parameters of nonlinear dynamic systems in pharmacology using chaos synchronization and grid search

被引:14
|
作者
Pillai, Nikhil [1 ]
Schwartz, Sorell L. [2 ]
Ho, Thang [3 ]
Dokoumetzidis, Aris [4 ]
Bies, Robert [1 ,5 ]
Freedman, Immanuel [6 ]
机构
[1] SUNY Buffalo, Computat & Data Enabled Sci, Buffalo, NY USA
[2] Georgetown Univ, Med Ctr, Dept Pharmacol & Physiol, Georgetown, DC USA
[3] Vertex Pharmaceut, Boston, MA USA
[4] Univ Athens, Dept Pharmaceut Technol, Athens, Greece
[5] SUNY Buffalo, Pharmaceut Sci, Buffalo, NY USA
[6] Freedman Patent, Harleysville, PA 19438 USA
关键词
Chaos synchronization; Parameter estimation; Chaotic system; Delay differential equation; Least squares; CORTISOL; MODEL;
D O I
10.1007/s10928-019-09629-4
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Bridging fundamental approaches to model optimization for pharmacometricians, systems pharmacologists and statisticians is a critical issue. These fields rely primarily on Maximum Likelihood and Extended Least Squares metrics with iterative estimation of parameters. Our research combines adaptive chaos synchronization and grid search to estimate physiological and pharmacological systems with emergent properties by exploring deterministic methods that are more appropriate and have potentially superior performance than classical numerical approaches, which minimize the sum of squares or maximize the likelihood. We illustrate these issues with an established model of cortisol in human with nonlinear dynamics. The model describes cortisol kinetics over time, including its chaotic oscillations, by a delay differential equation. We demonstrate that chaos synchronization helps to avoid the tendency of the gradient-based optimization algorithms to end up in a local minimum. The subsequent analysis illustrates that the hybrid adaptive chaos synchronization for estimation of linear parameters with coarse-to-fine grid search for optimal values of non-linear parameters can be applied iteratively to accurately estimate parameters and effectively track trajectories for a wide class of noisy chaotic systems.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 50 条
  • [21] Anticipated synchronization of chaos for a class of high dimensional dynamic systems
    Sun, Tao
    Qin, Weiyang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2016, 35 (15): : 50 - 52
  • [22] Feasible synchronization of chaos in multidimensional dynamic Rossler's systems
    Shakhverdiev, EM
    CHEMICAL PHYSICS REPORTS, 1999, 18 (02): : 275 - 277
  • [23] Dynamic learning of synchronization in coupled nonlinear systems
    Wu, Yong
    Ding, Qianming
    Huang, Weifang
    Li, Tianyu
    Yu, Dong
    Jia, Ya
    NONLINEAR DYNAMICS, 2024, 112 (24) : 21945 - 21967
  • [24] Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis
    Farshidianfar, A.
    Saghafi, A.
    PHYSICS LETTERS A, 2014, 378 (46) : 3457 - 3463
  • [25] Synchronization of chaos and hyperchaos using linear and nonlinear feedback functions
    Ali, MK
    Fang, JQ
    PHYSICAL REVIEW E, 1997, 55 (05) : 5285 - 5290
  • [26] Global chaos synchronization of new chaotic systems via nonlinear control
    Chen, HK
    CHAOS SOLITONS & FRACTALS, 2005, 23 (04) : 1245 - 1251
  • [27] Chaos synchronization of nonlinear dynamical systems via a novel analytical approach
    Al-Azzawi, Saad Fawzi
    Aziz, Maysoon M.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (04) : 3493 - 3500
  • [28] Global Chaos Synchronization of Lu and Pan Systems by Adaptive Nonlinear Control
    Vaidyanathan, Sundarapandian
    Rajagopal, Karthikeyan
    ADVANCES IN DIGITAL IMAGE PROCESSING AND INFORMATION TECHNOLOGY, 2011, 205 : 193 - +
  • [29] Performance comparison of communication systems using chaos synchronization
    Kawata, J
    Nishio, Y
    Dedieu, H
    Ushida, A
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : B310 - B313
  • [30] Global chaos synchronization of new chaotic systems via nonlinear control
    Chen, Hsien-Keng
    Chaos, Solitons and Fractals, 2005, 23 (04): : 1245 - 1251