Estimating parameters of nonlinear dynamic systems in pharmacology using chaos synchronization and grid search

被引:14
|
作者
Pillai, Nikhil [1 ]
Schwartz, Sorell L. [2 ]
Ho, Thang [3 ]
Dokoumetzidis, Aris [4 ]
Bies, Robert [1 ,5 ]
Freedman, Immanuel [6 ]
机构
[1] SUNY Buffalo, Computat & Data Enabled Sci, Buffalo, NY USA
[2] Georgetown Univ, Med Ctr, Dept Pharmacol & Physiol, Georgetown, DC USA
[3] Vertex Pharmaceut, Boston, MA USA
[4] Univ Athens, Dept Pharmaceut Technol, Athens, Greece
[5] SUNY Buffalo, Pharmaceut Sci, Buffalo, NY USA
[6] Freedman Patent, Harleysville, PA 19438 USA
关键词
Chaos synchronization; Parameter estimation; Chaotic system; Delay differential equation; Least squares; CORTISOL; MODEL;
D O I
10.1007/s10928-019-09629-4
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Bridging fundamental approaches to model optimization for pharmacometricians, systems pharmacologists and statisticians is a critical issue. These fields rely primarily on Maximum Likelihood and Extended Least Squares metrics with iterative estimation of parameters. Our research combines adaptive chaos synchronization and grid search to estimate physiological and pharmacological systems with emergent properties by exploring deterministic methods that are more appropriate and have potentially superior performance than classical numerical approaches, which minimize the sum of squares or maximize the likelihood. We illustrate these issues with an established model of cortisol in human with nonlinear dynamics. The model describes cortisol kinetics over time, including its chaotic oscillations, by a delay differential equation. We demonstrate that chaos synchronization helps to avoid the tendency of the gradient-based optimization algorithms to end up in a local minimum. The subsequent analysis illustrates that the hybrid adaptive chaos synchronization for estimation of linear parameters with coarse-to-fine grid search for optimal values of non-linear parameters can be applied iteratively to accurately estimate parameters and effectively track trajectories for a wide class of noisy chaotic systems.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 50 条
  • [1] Estimating parameters of nonlinear dynamic systems in pharmacology using chaos synchronization and grid search
    Nikhil Pillai
    Sorell L. Schwartz
    Thang Ho
    Aris Dokoumetzidis
    Robert Bies
    Immanuel Freedman
    Journal of Pharmacokinetics and Pharmacodynamics, 2019, 46 : 193 - 210
  • [2] Estimating model parameters by chaos synchronization
    Tao, C
    Zhang, Y
    Du, GH
    Jiang, JJ
    PHYSICAL REVIEW E, 2004, 69 (03): : 036204 - 1
  • [3] A nonlinear observer for estimating parameters in dynamic systems
    Friedland, B
    AUTOMATICA, 1997, 33 (08) : 1525 - 1530
  • [4] Grid Search And Chaos Synchronization As A Tool To Uniquely Estimate Parameters Of A Chaotic Pharmacological System
    Pillai, Nikhil
    Schwartz, Sorell L.
    Ho, Thang
    Dokoumetzidis, Aris
    Bies, Robert
    Freedman, Immanuel
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2017, 44 : S102 - S102
  • [5] Chaos synchronization and Nelder-Mead search for parameter estimation in nonlinear pharmacological systems: Estimating tumor antigenicity in a model of immunotherapy
    Pillai, Nikhil
    Craig, Morgan
    Dokoumetzidis, Aristeidis
    Schwartz, Sorell L.
    Bies, Robert
    Freedman, Immanuel
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2018, 139 : 23 - 30
  • [6] Estimation of parameters in nonlinear systems using balanced synchronization
    Abarbanel, Henry D. I.
    Creveling, Daniel R.
    Jeanne, James M.
    PHYSICAL REVIEW E, 2008, 77 (01)
  • [7] Estimating model parameters in nonautonomous chaotic systems using synchronization
    Yang, Xiaoli
    Xu, Wei
    Sun, Zhongkui
    PHYSICS LETTERS A, 2007, 364 (05) : 378 - 388
  • [8] Estimating Signal Parameters in Strong Clutter Using SVM-Based Chaos Synchronization
    He Di
    CHINESE JOURNAL OF ELECTRONICS, 2011, 20 (01): : 91 - 97
  • [9] Estimating phase synchronization in dynamical systems using cellular nonlinear networks
    Sowa, R
    Chernihovskyi, A
    Mormann, F
    Lehnertz, K
    PHYSICAL REVIEW E, 2005, 71 (06)
  • [10] Stabilization of Nonlinear Systems with Dynamic Chaos
    S. V. Budnik
    V. N. Shashihin
    Automatic Control and Computer Sciences, 2021, 55 : 213 - 221