ROBUST CONTROL OF A CAHN-HILLIARD-NAVIER-STOKES MODEL

被引:2
作者
Medjo, T. Tachim [1 ]
机构
[1] Florida Int Univ, Dept Math, DM413B Univ Pk, Miami, FL 33199 USA
关键词
Robust control; Navier-Stokes; Cahn-Hilliard; optimality condition; PHASE-FIELD MODEL; MAXIMUM PRINCIPLE; 2-PHASE FLOW; ASSIMILATION; EQUATIONS; FLUIDS; SHEAR;
D O I
10.3934/cpaa.2016028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this article a class of robust control problems associated with a coupled Cahn-Hilliard-Navier-Stokes model in a two dimensional bounded domain. The model consists of the Navier-Stokes equations for the velocity, coupled with the Cahn-Hilliard model for the order (phase) parameter. We prove the existence and uniqueness of solutions and we derive a first-order necessary optimality condition for these robust control problems.
引用
收藏
页码:2075 / 2101
页数:27
相关论文
共 50 条
  • [41] Strong solutions to the density-dependent incompressible Cahn-Hilliard-Navier-Stokes system
    Zhao, Xiaopeng
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2019, 16 (04) : 701 - 742
  • [42] Invariant measure for 2D stochastic Cahn-Hilliard-Navier-Stokes equations
    Qiu, Zhaoyang
    Wang, Huaqiao
    Huang, Daiwen
    STOCHASTICS AND DYNAMICS, 2023, 23 (03)
  • [43] Continuous Data Assimilation Algorithm for the Two Dimensional Cahn-Hilliard-Navier-Stokes System
    You, Bo
    Xia, Qing
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (02)
  • [44] Analysis of a Linearized Energy Stable Numerical Scheme for a Modified Incompressible Cahn-Hilliard-Navier-Stokes System
    Wang, Xue
    Jia, Hong-en
    Li, Ming
    Li, Kai-tai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (03): : 605 - 622
  • [45] Fully discrete finite element approximation of the stochastic Cahn-Hilliard-Navier-Stokes system
    Deugoue, G.
    Moghomye, B. Jidjou
    Medjo, T. Tachim
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 3046 - 3112
  • [46] Instability of two-phase flows: A lower bound on the dimension of the global attractor of the Cahn-Hilliard-Navier-Stokes system
    Gal, Ciprian G.
    Grasselli, Maurizio
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (07) : 629 - 635
  • [47] TRAJECTORY STATISTICAL SOLUTIONS FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM WITH MOVING CONTACT LINES
    You, Bo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, : 4769 - 4785
  • [48] A priori Error Analysis of a Discontinuous Galerkin Method for Cahn-Hilliard-Navier-Stokes Equations
    Liu, Chen
    Riviere, Beatrice
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2020, 1 (01): : 104 - 141
  • [49] An efficient numerical algorithm for solving viscosity contrast Cahn-Hilliard-Navier-Stokes system in porous media
    Liu, Chen
    Frank, Florian
    Thiele, Christopher
    Alpak, Faruk O.
    Berg, Steffen
    Chapman, Walter
    Riviere, Beatrice
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 400
  • [50] Convergence of the solution of the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes equations
    Deugoue, G.
    Medjo, T. Tachim
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (02) : 545 - 592