Population pharmacokinetic model and Bayesian estimator for 2 tacrolimus formulations in adult liver transplant patients

被引:15
作者
Riff, Camille [1 ]
Debord, Jean [1 ,2 ,3 ]
Monchaud, Caroline [1 ,2 ,3 ]
Marquet, Pierre [1 ,2 ,3 ]
Woillard, Jean-Baptiste [1 ,2 ,3 ]
机构
[1] CHU Limoges, Dept Pharmacol & Toxicol, Limoges, France
[2] Univ Limoges, IPPRITT, F-87000 Limoges, France
[3] INSERM, U1248, IPPRITT, F-87000 Limoges, France
关键词
ITSIM; liver transplantation; Pmetrics; population modelling; tacrolimus; DOSE ADJUSTMENT; BLOOD-CONCENTRATIONS; EXPOSURE; KIDNEY; PROGRAF(R); RECIPIENTS; REJECTION; EFFICACY; THERAPY; DESIGN;
D O I
10.1111/bcp.13960
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
AimsTacrolimus is a narrow therapeutic range drug that requires fine dose adjustment, for which pharmacokinetic (PK) models have been amply proposed in renal, but not in liver, transplant recipients. This study aimed to build population PK models and Bayesian estimators (BEs) in adult de novo liver transplant patients receiving either the immediate-release (Prograf, twice daily, TD) or prolonged-release (Advagraf, once daily, OD) forms to help PK-guided dose individualization. MethodsIn total, 160 tacrolimus concentration-time profiles (1654 samples) were collected from 80 patients, at day 7 (D7) and week 6 (W6) post-transplant. Four population PK models were developed using in-parallel parametric and nonparametric approaches for each formulation and period post-transplant. The best limited sampling strategies for estimating the area-under-the-curve (AUC) were selected by comparing predicted values to an independent dataset. Finally, the doses required to reach AUC targets were estimated using each BE and compared to the doses obtained using the trapezoidal AUC. ResultsTacrolimus PK was best described using a 1-compartmental model with first-order elimination and 2 gamma-distributions to describe the absorption. In the validation datasets, Bayesian AUC estimates yielded mean bias/root mean squared prediction error of -5.06%/13.43% (OD D7), 2.25%/8.51% (OD W6), -2.36%/7.27% (TD D7) and 0.87%/9.07% (TD W6) for the in-parallel parametric approach; and 8.95%/17.84% (OD D7), -0.11%/10.13% (OD W6), 3.57%/18.40% (TD D7) and 4.48%/12.59% (TD W6) for the nonparametric approach. ConclusionThe BEs and limited sampling strategies proposed here are able to predict accurately and precisely tacrolimus AUC in liver patients using only 3 plasma concentrations. The dosing methods are available on our ImmunoSuppressive Bayesian dose Adjustment website ().
引用
收藏
页码:1740 / 1750
页数:11
相关论文
共 32 条
  • [1] An HPLC/MS/MS assay for tacrolimus in patient blood samples - Correlation with results of an ELISA assay
    Alak, AM
    Moy, S
    Cook, M
    Lizak, P
    Niggebiugge, A
    Menard, S
    Chilton, A
    [J]. JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 1997, 16 (01) : 7 - 13
  • [2] Limited sampling strategies for tacrolimus exposure (AUC0-24) predictionafter Prograf® and Advagraf® administration in children and adolescents with liver or kidney transplants
    Almeida-Paulo, Gonzalo N.
    Lubomirov, Rubin
    Laura Alonso-Sanchez, Nazareth
    Espinosa-Roman, Laura
    Fernandez Camblor, Carlota
    Diaz, Carmen
    Munoz Bartola, Gema
    Carcas-Sansuan, Antonio J.
    [J]. TRANSPLANT INTERNATIONAL, 2014, 27 (09) : 939 - 948
  • [3] Population pharmacokinetics of tacrolimus in full liver transplant patients: modelling of the post-operative clearance
    Antignac, M
    Hulot, JS
    Boleslawski, E
    Hannoun, L
    Touitou, Y
    Farinotti, R
    Lechat, P
    Urien, S
    [J]. EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 2005, 61 (5-6) : 409 - 416
  • [4] Efficacy, safety, and immunosuppressant adherence in stable liver transplant patients converted from a twice-daily tacrolimus-based regimen to once-daily tacrolimus extended-release formulation
    Beckebaum, Susanne
    Iacob, Speranta
    Sweid, Dani
    Sotiropoulos, Georgios C.
    Saner, Fuat
    Kaiser, Gernot
    Radtke, Arnold
    Klein, Christian G.
    Erim, Yesim
    de Geest, Sabina
    Paul, Andreas
    Gerken, Guido
    Cicinnati, Vito R.
    [J]. TRANSPLANT INTERNATIONAL, 2011, 24 (07) : 666 - 675
  • [5] Population Pharmacokinetics and Bayesian Estimation of Tacrolimus Exposure in Renal Transplant Recipients on a New Once-Daily Formulation
    Benkali, Khaled
    Rostaing, Lionel
    Premaud, Aurelie
    Woillard, Jean-Baptiste
    Saint-Marcoux, Franck
    Urien, Saik
    Kamar, Nassim
    Marquet, Pierre
    Rousseau, Annick
    [J]. CLINICAL PHARMACOKINETICS, 2010, 49 (10) : 683 - 692
  • [6] Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models
    Bergstrand, Martin
    Hooker, Andrew C.
    Wallin, Johan E.
    Karlsson, Mats O.
    [J]. AAPS JOURNAL, 2011, 13 (02): : 143 - 151
  • [7] Tacrolimus Predose Concentrations Do Not Predict the Risk of Acute Rejection After Renal Transplantation: A Pooled Analysis From Three Randomized-Controlled Clinical Trials
    Bouamar, R.
    Shuker, N.
    Hesselink, D. A.
    Weimar, W.
    Ekberg, H.
    Kaplan, B.
    Bernasconi, C.
    van Gelder, T.
    [J]. AMERICAN JOURNAL OF TRANSPLANTATION, 2013, 13 (05) : 1253 - 1261
  • [8] Population Pharmacokinetic Modelling and Bayesian Estimation of Tacrolimus Exposure: Is this Clinically Useful for Dosage Prediction Yet?
    Brooks, Emily
    Tett, Susan E.
    Isbel, Nicole M.
    Staatz, Christine E.
    [J]. CLINICAL PHARMACOKINETICS, 2016, 55 (11) : 1295 - 1335
  • [9] Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in Chinese liver transplant patients
    Chen, B.
    Shi, H. -Q.
    Liu, X. -X.
    Zhang, W. -X.
    Lu, J. -Q.
    Xu, B. -M.
    Chen, H.
    [J]. JOURNAL OF CLINICAL PHARMACY AND THERAPEUTICS, 2017, 42 (06) : 679 - 688
  • [10] Application of a gamma model of absorption to oral cyclosporin
    Debord, J
    Risco, E
    Harel, M
    Le Meur, Y
    Büchler, M
    Lachâtre, G
    Le Guellec, C
    [J]. CLINICAL PHARMACOKINETICS, 2001, 40 (05) : 375 - 382