A random construction for permutation codes and the covering radius

被引:16
作者
Keevash, Peter [1 ]
Ku, Cheng Yeaw [1 ]
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
关键词
permutation codes; covering radius; restricted intersections;
D O I
10.1007/s10623-006-0017-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We analyse a probabilistic argument that gives a semi-random construction for a permutation code on n symbols with distance n-s and size Theta(s!(log n)(1/2)), and a bound on the covering radius for sets of permutations in terms of a certain frequency parameter.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 15 条
[1]  
Alon N., 2000, PROBABILISTIC METHOD
[2]  
Babai L., 1992, Linear Algebra Methods in Combinatorics: With Applications to Geometry and Computer Science
[3]   Covering radius for sets of permutations [J].
Cameron, PJ ;
Wanless, IM .
DISCRETE MATHEMATICS, 2005, 293 (1-3) :91-109
[4]   Intersecting families of permutations [J].
Cameron, PJ ;
Ku, CY .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (07) :881-890
[5]   Constructions for permutation codes in powerline communications [J].
Chu, WS ;
Colbourn, CJ ;
Dukes, P .
DESIGNS CODES AND CRYPTOGRAPHY, 2004, 32 (1-3) :51-64
[6]   Constructions of permutation arrays [J].
Ding, CS ;
Fu, FW ;
Klove, T ;
Wei, VKW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) :977-980
[7]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[8]   LOPSIDED LOVASZ LOCAL LEMMA AND LATIN TRANSVERSALS [J].
ERDOS, P ;
SPENCER, J .
DISCRETE APPLIED MATHEMATICS, 1991, 30 (2-3) :151-154
[9]   MAXIMUM NUMBER OF PERMUTATIONS WITH GIVEN MAXIMAL OR MINIMAL DISTANCE [J].
FRANKL, P ;
DEZA, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (03) :352-360
[10]  
FRANKL P, 1995, HDB COMBINATORICS, P1293