Pulse-density modulation control of chemical oscillation far from equilibrium in a droplet open-reactor system

被引:24
作者
Sugiura, Haruka [1 ]
Ito, Manami [1 ]
Okuaki, Tomoya [1 ]
Mori, Yoshihito [2 ]
Kitahata, Hiroyuki [3 ]
Takinoue, Masahiro [1 ,4 ]
机构
[1] Tokyo Inst Technol, Dept Computat Intelligence & Syst Sci, Midori Ku, 4259 Nagatsuta Cho, Yokohama, Kanagawa 2268502, Japan
[2] Ochanomizu Univ, Fac Sci, Dept Chem, Bunkyo Ku, 2-1-1 Ohtsuka, Tokyo 1128610, Japan
[3] Chiba Univ, Grad Sch Sci, Dept Phys, Inage Ku, 1-33 Yayoi Cho, Chiba 2638522, Japan
[4] Japan Sci & Technol Agcy JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
关键词
ARTIFICIAL CELL; GENE-EXPRESSION; SELF-ORGANIZATION; HIGH-THROUGHPUT; FERROCYANIDE; NETWORKS; SULFITE; PROTEIN; DNA; MICROREACTORS;
D O I
10.1038/ncomms10212
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
引用
收藏
页数:9
相关论文
共 61 条
[1]   High-throughput injection with microfluidics using picoinjectors [J].
Abate, Adam R. ;
Hung, Tony ;
Mary, Pascaline ;
Agresti, Jeremy J. ;
Weitz, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (45) :19163-19166
[2]   Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices [J].
Ahn, K ;
Kerbage, C ;
Hunt, TP ;
Westervelt, RM ;
Link, DR ;
Weitz, DA .
APPLIED PHYSICS LETTERS, 2006, 88 (02) :1-3
[3]  
Alberts B., 2002, Molecular Biology of the Cell. (4th edition), V4th ed
[4]  
[Anonymous], 1994, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, DOI 9780738204536
[5]   An optical toolbox for total control of droplet microfluidics [J].
Baroud, Charles N. ;
de Saint Vincent, Matthieu Robert ;
Delville, Jean-Pierre .
LAB ON A CHIP, 2007, 7 (08) :1029-1033
[6]   RNA catalysis in model protocell vesicles [J].
Chen, IA ;
Salehi-Ashtiani, K ;
Szostak, JW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (38) :13213-13219
[7]   Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits [J].
Cho, SK ;
Moon, HJ ;
Kim, CJ .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (01) :70-80
[8]   A synchronized quorum of genetic clocks [J].
Danino, Tal ;
Mondragon-Palomino, Octavio ;
Tsimring, Lev ;
Hasty, Jeff .
NATURE, 2010, 463 (7279) :326-330
[9]   Sustained oscillations in living cells [J].
Dano, S ;
Sorensen, PG ;
Hynne, F .
NATURE, 1999, 402 (6759) :320-322
[10]   EXPERIMENTAL-OBSERVATIONS OF PERIODIC AND CHAOTIC REGIMES IN A FORCED CHEMICAL OSCILLATOR [J].
DOLNIK, M ;
SCHREIBER, I ;
MAREK, M .
PHYSICS LETTERS A, 1984, 100 (06) :316-319