Bootstrapping goodness-of-fit measures in categorical data analysis

被引:154
作者
Langeheine, R
Pannekoek, J
VandePol, F
机构
关键词
D O I
10.1177/0049124196024004004
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
When sparse data save to be fitted to a log-linear or latent class model, one cannot use the theoretical chi-square distribution to evaluate model fit, because with sparse data the observed cross-table has too many cells in relation to the number of observations to use a distribution that only holds asymptotically. The choice of a theoretical distribution is also difficult when model-expected frequencies 0 or when model probabilities are estimated 0 or 1. The authors propose to solve these problems by estimating the distribution of a fit measure, using bootstrap methods. An algorithm is presented for estimating this distribution by drawing bootstrap samples from the model-expected proportions, the so-called nonnaive bootstrap method. For the first time the method is applied to empirical data of varying sparseness, from five different data sets. Results show that the asymptotic chi-square distribution is not at all valid for sparse data.
引用
收藏
页码:492 / 516
页数:25
相关论文
共 43 条