Methylation of histone H3 Lys 4 in coding regions of active genes

被引:583
作者
Bernstein, BE
Humphrey, EL
Erlich, RL
Schneider, R
Bouman, P
Liu, JS
Kouzarides, T
Schreiber, SL [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Howard Hughes Med Inst, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[3] Harvard Univ, Howard Hughes Med Inst, Dept Stat, Cambridge, MA 02138 USA
[4] Harvard Univ, Ctr Genom Res, Cambridge, MA 02138 USA
[5] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[6] Wellcome Canc Res Campaign Inst, Cambridge CB2 1QR, England
[7] Dept Pathol, Cambridge CB2 1QR, England
关键词
D O I
10.1073/pnas.082249499
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Posttranslational modifications of histone tails regulate chromatin structure and transcription. Here we present global analyses of histone acetylation and histone H3 Lys 4 methylation patterns in yeast. We observe a significant correlation between acetylation of histories H3 and H4 in promoter regions and transcriptional activity. In contrast, we find that dimethylation of histone H3 Lys 4 in coding regions correlates with transcriptional activity. The histone methyltransferase Set1 is required to maintain expression of these active, promoter-acetylated, and coding region-methylated genes. Global comparisons reveal that genomic regions deacetylated by the yeast enzymes Rpd3 and Hda1 overlap extensively with Lys 4 hypo- but not hypermethylated regions. In the context of recent studies showing that Lys 4 methylation precludes histone deacetylase recruitment, we conclude that Set1 facilitates transcription, in part, by protecting active coding regions from deacetylation.
引用
收藏
页码:8695 / 8700
页数:6
相关论文
共 44 条
[1]   Genomewide studies of histone deacetylase function in yeast [J].
Bernstein, BE ;
Tong, JK ;
Schreiber, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (25) :13708-13713
[2]   Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes [J].
Boggs, BA ;
Cheung, P ;
Heard, E ;
Spector, DL ;
Chinault, AC ;
Allis, CD .
NATURE GENETICS, 2002, 30 (01) :73-76
[3]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[4]   Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae [J].
Briggs, SD ;
Bryk, M ;
Strahl, BD ;
Cheung, WL ;
Davie, JK ;
Dent, SYR ;
Winston, F ;
Allis, CD .
GENES & DEVELOPMENT, 2001, 15 (24) :3286-3295
[5]   Chemical inhibition of the Pho85 cyclin-dependent kinase reveals a role in the environmental stress response [J].
Carroll, AS ;
Bishop, AC ;
DeRisi, JL ;
Shokat, KM ;
O'Shea, EK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (22) :12578-12583
[6]   The genome-wide localization of Rsc9, a component of the RSC chromatin-remodeling complex, changes in response to stress [J].
Damelin, M ;
Simon, I ;
Moy, TI ;
Wilson, B ;
Komili, S ;
Tempst, P ;
Roth, FP ;
Young, RA ;
Cairns, BR ;
Silver, PA .
MOLECULAR CELL, 2002, 9 (03) :563-573
[7]   Exploring the metabolic and genetic control of gene expression on a genomic scale [J].
DeRisi, JL ;
Iyer, VR ;
Brown, PO .
SCIENCE, 1997, 278 (5338) :680-686
[8]   Localization of Sir2p: The nucleolus as a compartment for silent information regulators [J].
Gotta, M ;
StrahlBolsinger, S ;
Renauld, H ;
Laroche, T ;
Kennedy, BK ;
Grunstein, M ;
Gasser, SM .
EMBO JOURNAL, 1997, 16 (11) :3243-3255
[9]  
Hecht A, 1999, METHOD ENZYMOL, V304, P399
[10]   Dissecting the regulatory circuitry of a eukaryotic genome [J].
Holstege, FCP ;
Jennings, EG ;
Wyrick, JJ ;
Lee, TI ;
Hengartner, CJ ;
Green, MR ;
Golub, TR ;
Lander, ES ;
Young, RA .
CELL, 1998, 95 (05) :717-728