On the geometry of wave solutions of a delayed reaction-diffusion equation

被引:25
作者
Trofimchuk, Elena [2 ]
Alvarado, Pedro [1 ]
Trofimchuk, Sergei [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Talca, Chile
[2] Natl Tech Univ, Dept Differential Equat, Kiev, Ukraine
关键词
Time-delayed reaction-diffusion equation; Heteroclinic solutions; Non-monotone positive travelling fronts; FUNCTIONAL-DIFFERENTIAL EQUATIONS; DISCRETE POPULATION-MODELS; TRAVELING-WAVES; GLOBAL STABILITY; ASYMPTOTIC-BEHAVIOR; INTEGRAL-EQUATIONS; FRONTS; SPEEDS; PROPAGATION; SYSTEMS;
D O I
10.1016/j.jde.2008.10.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the existence and the geometry of positive bounded wave solutions to a non-local delayed reaction-diffusion equation of the monostable type. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1422 / 1444
页数:23
相关论文
共 50 条
  • [41] TRAVELING WAVE SOLUTIONS OF A REACTION-DIFFUSION PREDATOR-PREY MODEL
    Liu, Jiang
    Shang, Xiaohui
    Du, Zengji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (05): : 1063 - 1078
  • [42] Traveling wave solutions for a class of reaction-diffusion system
    Wang, Bingyi
    Zhang, Yang
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [43] Existence of Traveling Wave Solutions of a Kind of Reaction-diffusion Equations with Delays
    Yang, Zhiguo
    2013 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2013, : 376 - 380
  • [44] Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
    Wang, Sheng
    Liu, Wenbin
    Guo, Zhengguang
    Wang, Weiming
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [45] PROPAGATING TERRACE IN A PERIODIC REACTION-DIFFUSION EQUATION WITH CONVECTION
    Shen, Liang-Bin
    Han, Bang-Sheng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03): : 1395 - 1413
  • [46] Global dynamics of delayed reaction-diffusion equations in unbounded domains
    Yi, Taishan
    Chen, Yuming
    Wu, Jianhong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (05): : 793 - 812
  • [47] Global Stability of Traveling Waves for a More General Nonlocal Reaction-Diffusion Equation
    Yan, Rui
    Liu, Guirong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [48] Uniqueness of wave speeds in bistable reaction-diffusion equations
    Huang, Yanli
    Lin, Guo
    Pan, Shuxia
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [49] Hopf bifurcation in a spatial heterogeneous and nonlocal delayed reaction-diffusion equation
    Li, Yanqiu
    Zhou, Yibo
    Zhu, Lushuai
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [50] ON THE MINIMAL SPEED OF TRAVELING WAVES FOR A NONLOCAL DELAYED REACTION-DIFFUSION EQUATION
    Aguerrea, M.
    Valenzuela, G.
    NONLINEAR OSCILLATIONS, 2010, 13 (01): : 1 - 9