On the geometry of wave solutions of a delayed reaction-diffusion equation

被引:25
作者
Trofimchuk, Elena [2 ]
Alvarado, Pedro [1 ]
Trofimchuk, Sergei [1 ]
机构
[1] Univ Talca, Inst Matemat & Fis, Talca, Chile
[2] Natl Tech Univ, Dept Differential Equat, Kiev, Ukraine
关键词
Time-delayed reaction-diffusion equation; Heteroclinic solutions; Non-monotone positive travelling fronts; FUNCTIONAL-DIFFERENTIAL EQUATIONS; DISCRETE POPULATION-MODELS; TRAVELING-WAVES; GLOBAL STABILITY; ASYMPTOTIC-BEHAVIOR; INTEGRAL-EQUATIONS; FRONTS; SPEEDS; PROPAGATION; SYSTEMS;
D O I
10.1016/j.jde.2008.10.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the existence and the geometry of positive bounded wave solutions to a non-local delayed reaction-diffusion equation of the monostable type. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1422 / 1444
页数:23
相关论文
共 35 条
[1]  
AGUERREA IM, 2008, P R SOC A, V464, P2591
[2]   Monotone travelling fronts in an age-structured reaction-diffusion model of a single species [J].
Al-Omari, J ;
Gourley, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 45 (04) :294-312
[3]  
[Anonymous], T AM MATH SOC
[4]   Travelling fronts for the KPP equation with spatio-temporal delay [J].
Ashwin, P ;
Bartuccelli, MV ;
Bridges, TJ ;
Gourley, SA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2002, 53 (01) :103-122
[5]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[6]   RUN FOR YOUR LIFE - NOTE ON THE ASYMPTOTIC SPEED OF PROPAGATION OF AN EPIDEMIC [J].
DIEKMANN, O .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (01) :58-73
[7]   Globally attracting fixed points in higher order discrete population models [J].
El-Morshedy, Hassan A. ;
Liz, Eduardo .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) :365-384
[8]   Travelling waves for delayed reaction-diffusion equations with global response [J].
Faria, T ;
Huang, W ;
Wu, JH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2065) :229-261
[9]   Nonmonotone travelling waves in a single species reaction-diffusion equation with delay [J].
Faria, Teresa ;
Trofimchuk, Sergei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 228 (01) :357-376
[10]  
Gilding BH., 2004, Travelling Waves in Nonlinear Diffusion-Convection Reaction