Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications

被引:91
作者
Leclerc, E
Furukawa, KS
Miyata, F
Sakai, Y
Ushida, T
Fujii, T
机构
[1] Univ Tokyo, LIMMS, IIS, CNRS,Meguro Ku, Tokyo 1538505, Japan
[2] Univ Tokyo, Grad Sch Engn, Bunkyo Ku, Tokyo 1138654, Japan
基金
日本学术振兴会;
关键词
microfabrication; photosensitive biodegradable polymers; Hep G2; HUVEC and 3T3-L1 cell cultures;
D O I
10.1016/j.biomaterials.2003.10.060
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Combining the MEMS technology and biology requirements for tissue engineering, the fabrication processes of microstructured chambers and microchannels made in biodegradable photosensitive polymers are presented. The fabrication processes, based on softlithography are very fast and flexible. Various single and multistepwise microstructures could be achieved using the biodegradable polymers. Microstructures down to 50 mum, which are suitable for liver reconstructs, could be fabricated. As the pCLLA acrylate photosensitive polymer has interesting property for implantable bioreactors, that is, its softness, we examined the ability of various mammalian cells to grow and spread on it. With Hep G2 cells, human umbilical blood vessel endothelial cells (HUVEC), 3T3-L1 mouse fibroblasts, static cultures could be successfully performed on single stepwise microstructures. Then, by using this photosensitive biodegradable polymer, a microstructure with simple fluidic channels is fabricated and a perfusion experiment could be carried out. Both cell cultures and perfusion experiments suggested the possibility to use the present photosensitive polymer as microfluidic supports for biodegradable bioreactors for implantation applications. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4683 / 4690
页数:8
相关论文
共 27 条
[1]   CONTROLLED SYNTHESIS OF HBSAG IN A DIFFERENTIATED HUMAN-LIVER CARCINOMA-DERIVED CELL-LINE [J].
ADEN, DP ;
FOGEL, A ;
PLOTKIN, S ;
DAMJANOV, I ;
KNOWLES, BB .
NATURE, 1979, 282 (5739) :615-616
[2]   Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping [J].
Anderson, JR ;
Chiu, DT ;
Jackman, RJ ;
Cherniavskaya, O ;
McDonald, JC ;
Wu, HK ;
Whitesides, SH ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2000, 72 (14) :3158-3164
[3]  
AOYAGI T, 1994, J CONTROL RELEASE, V32, P87
[4]   Mircofabrication technology for polycaprolactone, a biodegradable polymer [J].
Armani, DK ;
Liu, C .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2000, 10 (01) :80-84
[5]   Microfabrication of hepatocyte/fibroblast co-cultures: Role of homotypic cell interactions [J].
Bhatia, SN ;
Balis, UJ ;
Yarmush, ML ;
Toner, M .
BIOTECHNOLOGY PROGRESS, 1998, 14 (03) :378-387
[6]   Conformal contact and pattern stability of stamps used for soft lithography [J].
Bietsch, A ;
Michel, B .
JOURNAL OF APPLIED PHYSICS, 2000, 88 (07) :4310-4318
[7]   Microfabrication technology for vascularized tissue engineering [J].
Borenstein, JT ;
Terai, H ;
King, KR ;
Weinberg, EJ ;
Kaazempur-Mofrad, MR ;
Vacanti, JP .
BIOMEDICAL MICRODEVICES, 2002, 4 (03) :167-175
[8]   Diffusion of gases in silicone polymers: Molecular dynamics simulations [J].
Charati, SG ;
Stern, SA .
MACROMOLECULES, 1998, 31 (16) :5529-5535
[9]   Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems [J].
Chiu, DT ;
Jeon, NL ;
Huang, S ;
Kane, RS ;
Wargo, CJ ;
Choi, IS ;
Ingber, DE ;
Whitesides, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2408-2413
[10]  
CIARAVELLA G, 2002, IEEE EMBS SPEC TOP C, P46