Pharmacogenomics and histone deacetylase inhibitors

被引:32
|
作者
Goey, Andrew K. L. [1 ]
Sissung, Tristan M. [1 ]
Peer, Cody J. [1 ]
Figg, William D. [1 ]
机构
[1] NCI, Clin Pharmacol Program, NIH, Bethesda, MD 20892 USA
关键词
belinostat; HDAC inhibitors; panobinostat; pharmacogenomics; romidepsin; UGT1A1; valproic acid; vorinostat; GLUCURONOSYLTRANSFERASE; 1A1; PROMOTER; VALPROIC ACID PHARMACOKINETICS; IRINOTECAN-INDUCED NEUTROPENIA; CHINESE EPILEPSY PATIENTS; UGT1A1-ASTERISK-28; GENOTYPE; PANOBINOSTAT LBH589; FUNCTIONAL IMPACT; GLUCURONIDATION; POLYMORPHISMS; UGT2B7;
D O I
10.2217/pgs-2016-0113
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The histone deacetylase inhibitor valproic acid (VPA) has been used for many decades in neurology and psychiatry. The more recent introduction of the histone deacetylase inhibitors (HDIs) belinostat, romidepsin and vorinostat for treatment of hematological malignancies indicates the increasing popularity of these agents. Belinostat, romidepsin and vorinostat are metabolized or transported by polymorphic enzymes or drug transporters. Thus, genotype-directed dosing could improve pharmacotherapy by reducing the risk of toxicities or preventing suboptimal treatment. This review provides an overview of clinical studies on the effects of polymorphisms on the pharmacokinetics, efficacy or toxicities of HDIs including belinostat, romidepsin, vorinostat, panobinostat, VPA and a number of novel compounds currently being tested in Phase I and II trials. Although pharmacogenomic studies for HDIs are scarce, available data indicate that therapy with belinostat (UGT1A1), romidepsin (ABCB1), vorinostat (UGT2B17) or VPA (UGT1A6) could be optimized by upfront genotyping.
引用
收藏
页码:1807 / 1815
页数:9
相关论文
共 50 条
  • [21] The Impact of Fluorination on the Design of Histone Deacetylase Inhibitors
    Anh, Duong Tien
    Nam, Nguyen Hai
    Kircher, Brigitte
    Baecker, Daniel
    MOLECULES, 2023, 28 (04):
  • [22] Recent histone deacetylase inhibitors in cancer therapy
    Parveen, Roza
    Harihar, Divya
    Chatterji, Biswa Prasun
    CANCER, 2023, 129 (21) : 3372 - 3380
  • [23] Histone deacetylase inhibitors in the treatment of hematological malignancies
    Lemal, Richard
    Ravinet, Aurelie
    Molucon-Chabrot, Cecile
    Bay, Jacques-Olivier
    Guieze, Romain
    BULLETIN DU CANCER, 2011, 98 (08) : 867 - 878
  • [24] Development of histone deacetylase inhibitors for cancer treatment
    Marchion, Douglas
    Muenster, Pamela
    EXPERT REVIEW OF ANTICANCER THERAPY, 2007, 7 (04) : 583 - 598
  • [25] Macrocyclic Histone Deacetylase Inhibitors
    Mwakwari, Sandra C.
    Patil, Vishal
    Guerrant, William
    Oyelere, Adegboyega K.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2010, 10 (14) : 1423 - 1440
  • [26] Histone Deacetylases and Histone Deacetylase Inhibitors in Neuroblastoma
    Phimmachanh, Monica
    Han, Jeremy Z. R.
    O'Donnell, Yolande E., I
    Latham, Sharissa L.
    Croucher, David R.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [27] Targeting tumor angiogenesis with histone deacetylase inhibitors
    Ellis, Leigh
    Hammers, Hans
    Pili, Roberto
    CANCER LETTERS, 2009, 280 (02) : 145 - 153
  • [28] Histone deacetylase inhibitors and demethylating agents: Clinical development of histone deacetylase inhibitors for cancer therapy
    Piekarz, Richard L.
    Sackett, Dan L.
    Bates, Susan E.
    CANCER JOURNAL, 2007, 13 (01) : 30 - 39
  • [29] Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience
    Pavel Bezecny
    Medical Oncology, 2014, 31
  • [30] Histone deacetylase inhibitors: targeting epigenetic regulation in the treatment of acute leukemia
    Xiao, Tong
    Chen, Zhigang
    Xie, Yutong
    Yang, Chao
    Wu, Junhong
    Gao, Lei
    THERAPEUTIC ADVANCES IN HEMATOLOGY, 2024, 15